HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elnlfn Structured version   Unicode version

Theorem elnlfn 27579
Description: Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elnlfn  |-  ( T : ~H --> CC  ->  ( A  e.  ( null `  T )  <->  ( A  e.  ~H  /\  ( T `
 A )  =  0 ) ) )

Proof of Theorem elnlfn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nlfnval 27532 . . . . . 6  |-  ( T : ~H --> CC  ->  (
null `  T )  =  ( `' T " { 0 } ) )
2 cnvimass 5207 . . . . . 6  |-  ( `' T " { 0 } )  C_  dom  T
31, 2syl6eqss 3514 . . . . 5  |-  ( T : ~H --> CC  ->  (
null `  T )  C_ 
dom  T )
4 fdm 5750 . . . . 5  |-  ( T : ~H --> CC  ->  dom 
T  =  ~H )
53, 4sseqtrd 3500 . . . 4  |-  ( T : ~H --> CC  ->  (
null `  T )  C_ 
~H )
65sseld 3463 . . 3  |-  ( T : ~H --> CC  ->  ( A  e.  ( null `  T )  ->  A  e.  ~H ) )
76pm4.71rd 639 . 2  |-  ( T : ~H --> CC  ->  ( A  e.  ( null `  T )  <->  ( A  e.  ~H  /\  A  e.  ( null `  T
) ) ) )
81eleq2d 2492 . . . . 5  |-  ( T : ~H --> CC  ->  ( A  e.  ( null `  T )  <->  A  e.  ( `' T " { 0 } ) ) )
98adantr 466 . . . 4  |-  ( ( T : ~H --> CC  /\  A  e.  ~H )  ->  ( A  e.  (
null `  T )  <->  A  e.  ( `' T " { 0 } ) ) )
10 ffn 5746 . . . . 5  |-  ( T : ~H --> CC  ->  T  Fn  ~H )
11 eleq1 2495 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  ( `' T " { 0 } )  <->  A  e.  ( `' T " { 0 } ) ) )
12 fveq2 5881 . . . . . . . . 9  |-  ( x  =  A  ->  ( T `  x )  =  ( T `  A ) )
1312eqeq1d 2424 . . . . . . . 8  |-  ( x  =  A  ->  (
( T `  x
)  =  0  <->  ( T `  A )  =  0 ) )
1411, 13bibi12d 322 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  ( `' T " { 0 } )  <->  ( T `  x )  =  0 )  <->  ( A  e.  ( `' T " { 0 } )  <-> 
( T `  A
)  =  0 ) ) )
1514imbi2d 317 . . . . . 6  |-  ( x  =  A  ->  (
( T  Fn  ~H  ->  ( x  e.  ( `' T " { 0 } )  <->  ( T `  x )  =  0 ) )  <->  ( T  Fn  ~H  ->  ( A  e.  ( `' T " { 0 } )  <-> 
( T `  A
)  =  0 ) ) ) )
16 fnbrfvb 5921 . . . . . . . 8  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( ( T `  x )  =  0  <-> 
x T 0 ) )
17 0cn 9642 . . . . . . . . 9  |-  0  e.  CC
18 vex 3083 . . . . . . . . . 10  |-  x  e. 
_V
1918eliniseg 5216 . . . . . . . . 9  |-  ( 0  e.  CC  ->  (
x  e.  ( `' T " { 0 } )  <->  x T
0 ) )
2017, 19ax-mp 5 . . . . . . . 8  |-  ( x  e.  ( `' T " { 0 } )  <-> 
x T 0 )
2116, 20syl6rbbr 267 . . . . . . 7  |-  ( ( T  Fn  ~H  /\  x  e.  ~H )  ->  ( x  e.  ( `' T " { 0 } )  <->  ( T `  x )  =  0 ) )
2221expcom 436 . . . . . 6  |-  ( x  e.  ~H  ->  ( T  Fn  ~H  ->  ( x  e.  ( `' T " { 0 } )  <->  ( T `  x )  =  0 ) ) )
2315, 22vtoclga 3145 . . . . 5  |-  ( A  e.  ~H  ->  ( T  Fn  ~H  ->  ( A  e.  ( `' T " { 0 } )  <->  ( T `  A )  =  0 ) ) )
2410, 23mpan9 471 . . . 4  |-  ( ( T : ~H --> CC  /\  A  e.  ~H )  ->  ( A  e.  ( `' T " { 0 } )  <->  ( T `  A )  =  0 ) )
259, 24bitrd 256 . . 3  |-  ( ( T : ~H --> CC  /\  A  e.  ~H )  ->  ( A  e.  (
null `  T )  <->  ( T `  A )  =  0 ) )
2625pm5.32da 645 . 2  |-  ( T : ~H --> CC  ->  ( ( A  e.  ~H  /\  A  e.  ( null `  T ) )  <->  ( A  e.  ~H  /\  ( T `
 A )  =  0 ) ) )
277, 26bitrd 256 1  |-  ( T : ~H --> CC  ->  ( A  e.  ( null `  T )  <->  ( A  e.  ~H  /\  ( T `
 A )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   {csn 3998   class class class wbr 4423   `'ccnv 4852   dom cdm 4853   "cima 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601   CCcc 9544   0cc0 9546   ~Hchil 26570   nullcnl 26603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-cnex 9602  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-mulcl 9608  ax-i2m1 9614  ax-hilex 26650
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7485  df-nlfn 27497
This theorem is referenced by:  elnlfn2  27580  nlelshi  27711  nlelchi  27712  riesz3i  27713
  Copyright terms: Public domain W3C validator