Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmzpcl Structured version   Unicode version

Theorem elmzpcl 30262
Description: Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
elmzpcl  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
Distinct variable groups:    f, V, g    i, V    j, V, x    P, f, g    P, i    P, j, x

Proof of Theorem elmzpcl
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 mzpclval 30261 . . 3  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
21eleq2d 2537 . 2  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  P  e.  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) } ) )
3 eleq2 2540 . . . . . . 7  |-  ( p  =  P  ->  (
( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P ) )
43ralbidv 2903 . . . . . 6  |-  ( p  =  P  ->  ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P ) )
5 eleq2 2540 . . . . . . 7  |-  ( p  =  P  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( x `  j
) )  e.  p  <->  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) )
65ralbidv 2903 . . . . . 6  |-  ( p  =  P  ->  ( A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P ) )
74, 6anbi12d 710 . . . . 5  |-  ( p  =  P  ->  (
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  <-> 
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) ) )
8 eleq2 2540 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  oF  +  g )  e.  p  <->  ( f  oF  +  g )  e.  P ) )
9 eleq2 2540 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  oF  x.  g )  e.  p  <->  ( f  oF  x.  g )  e.  P ) )
108, 9anbi12d 710 . . . . . . 7  |-  ( p  =  P  ->  (
( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) )
1110raleqbi1dv 3066 . . . . . 6  |-  ( p  =  P  ->  ( A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  (
f  oF  x.  g )  e.  P
) ) )
1211raleqbi1dv 3066 . . . . 5  |-  ( p  =  P  ->  ( A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  (
f  oF  x.  g )  e.  P
) ) )
137, 12anbi12d 710 . . . 4  |-  ( p  =  P  ->  (
( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) )  <->  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g
)  e.  P ) ) ) )
1413elrab 3261 . . 3  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  <->  ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g
)  e.  P ) ) ) )
15 ovex 6307 . . . . 5  |-  ( ZZ 
^m  ( ZZ  ^m  V ) )  e. 
_V
1615elpw2 4611 . . . 4  |-  ( P  e.  ~P ( ZZ 
^m  ( ZZ  ^m  V ) )  <->  P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
1716anbi1i 695 . . 3  |-  ( ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) )  <-> 
( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) )
1814, 17bitri 249 . 2  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) )
192, 18syl6bb 261 1  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    C_ wss 3476   ~Pcpw 4010   {csn 4027    |-> cmpt 4505    X. cxp 4997   ` cfv 5586  (class class class)co 6282    oFcof 6520    ^m cmap 7417    + caddc 9491    x. cmul 9493   ZZcz 10860  mzPolyCldcmzpcl 30257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-mzpcl 30259
This theorem is referenced by:  mzpclall  30263  mzpcl1  30265  mzpcl2  30266  mzpcl34  30267  mzpincl  30270  mzpindd  30282
  Copyright terms: Public domain W3C validator