Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmzpcl Structured version   Unicode version

Theorem elmzpcl 29085
Description: Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
elmzpcl  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
Distinct variable groups:    f, V, g    i, V    j, V, x    P, f, g    P, i    P, j, x

Proof of Theorem elmzpcl
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 mzpclval 29084 . . 3  |-  ( V  e.  _V  ->  (mzPolyCld `  V )  =  {
p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
21eleq2d 2510 . 2  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  P  e.  { p  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) } ) )
3 eleq2 2504 . . . . . . 7  |-  ( p  =  P  ->  (
( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P ) )
43ralbidv 2754 . . . . . 6  |-  ( p  =  P  ->  ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  <->  A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P ) )
5 eleq2 2504 . . . . . . 7  |-  ( p  =  P  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( x `  j
) )  e.  p  <->  ( x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) )
65ralbidv 2754 . . . . . 6  |-  ( p  =  P  ->  ( A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  p  <->  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P ) )
74, 6anbi12d 710 . . . . 5  |-  ( p  =  P  ->  (
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  <-> 
( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P ) ) )
8 eleq2 2504 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  oF  +  g )  e.  p  <->  ( f  oF  +  g )  e.  P ) )
9 eleq2 2504 . . . . . . . 8  |-  ( p  =  P  ->  (
( f  oF  x.  g )  e.  p  <->  ( f  oF  x.  g )  e.  P ) )
108, 9anbi12d 710 . . . . . . 7  |-  ( p  =  P  ->  (
( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) )
1110raleqbi1dv 2944 . . . . . 6  |-  ( p  =  P  ->  ( A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  (
f  oF  x.  g )  e.  P
) ) )
1211raleqbi1dv 2944 . . . . 5  |-  ( p  =  P  ->  ( A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  (
f  oF  x.  g )  e.  p
)  <->  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  (
f  oF  x.  g )  e.  P
) ) )
137, 12anbi12d 710 . . . 4  |-  ( p  =  P  ->  (
( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  p  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) )  <->  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g
)  e.  P ) ) ) )
1413elrab 3136 . . 3  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  <->  ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  (
( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g
)  e.  P ) ) ) )
15 ovex 6135 . . . . 5  |-  ( ZZ 
^m  ( ZZ  ^m  V ) )  e. 
_V
1615elpw2 4475 . . . 4  |-  ( P  e.  ~P ( ZZ 
^m  ( ZZ  ^m  V ) )  <->  P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
1716anbi1i 695 . . 3  |-  ( ( P  e.  ~P ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) )  <-> 
( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  V )  X. 
{ i } )  e.  P  /\  A. j  e.  V  (
x  e.  ( ZZ 
^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) )
1814, 17bitri 249 . 2  |-  ( P  e.  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  V ) )  |  ( ( A. i  e.  ZZ  ( ( ZZ  ^m  V )  X.  {
i } )  e.  p  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V
)  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  (
( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g
)  e.  p ) ) }  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) )
192, 18syl6bb 261 1  |-  ( V  e.  _V  ->  ( P  e.  (mzPolyCld `  V
)  <->  ( P  C_  ( ZZ  ^m  ( ZZ  ^m  V ) )  /\  ( ( A. i  e.  ZZ  (
( ZZ  ^m  V
)  X.  { i } )  e.  P  /\  A. j  e.  V  ( x  e.  ( ZZ  ^m  V )  |->  ( x `  j ) )  e.  P )  /\  A. f  e.  P  A. g  e.  P  ( ( f  oF  +  g )  e.  P  /\  ( f  oF  x.  g )  e.  P ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2734   {crab 2738   _Vcvv 2991    C_ wss 3347   ~Pcpw 3879   {csn 3896    e. cmpt 4369    X. cxp 4857   ` cfv 5437  (class class class)co 6110    oFcof 6337    ^m cmap 7233    + caddc 9304    x. cmul 9306   ZZcz 10665  mzPolyCldcmzpcl 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-sbc 3206  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-iota 5400  df-fun 5439  df-fv 5445  df-ov 6113  df-mzpcl 29082
This theorem is referenced by:  mzpclall  29086  mzpcl1  29088  mzpcl2  29089  mzpcl34  29090  mzpincl  29093  mzpindd  29105
  Copyright terms: Public domain W3C validator