MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab2 Structured version   Unicode version

Theorem elmptrab2 20780
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Hypotheses
Ref Expression
elmptrab2.f  |-  F  =  ( x  e.  _V  |->  { y  e.  B  |  ph } )
elmptrab2.s1  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
elmptrab2.s2  |-  ( x  =  X  ->  B  =  C )
elmptrab2.ex  |-  B  e.  V
elmptrab2.rc  |-  ( Y  e.  C  ->  X  e.  W )
Assertion
Ref Expression
elmptrab2  |-  ( Y  e.  ( F `  X )  <->  ( Y  e.  C  /\  ps )
)
Distinct variable groups:    x, y, ps    x, X, y    x, Y, y    x, C, y   
x, V, y    x, W, y    y, B
Allowed substitution hints:    ph( x, y)    B( x)    F( x, y)

Proof of Theorem elmptrab2
StepHypRef Expression
1 elmptrab2.f . . 3  |-  F  =  ( x  e.  _V  |->  { y  e.  B  |  ph } )
2 elmptrab2.s1 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
3 elmptrab2.s2 . . 3  |-  ( x  =  X  ->  B  =  C )
4 elmptrab2.ex . . . 4  |-  B  e.  V
54a1i 11 . . 3  |-  ( x  e.  _V  ->  B  e.  V )
61, 2, 3, 5elmptrab 20779 . 2  |-  ( Y  e.  ( F `  X )  <->  ( X  e.  _V  /\  Y  e.  C  /\  ps )
)
7 3simpc 1004 . . 3  |-  ( ( X  e.  _V  /\  Y  e.  C  /\  ps )  ->  ( Y  e.  C  /\  ps ) )
8 elmptrab2.rc . . . . . 6  |-  ( Y  e.  C  ->  X  e.  W )
9 elex 3087 . . . . . 6  |-  ( X  e.  W  ->  X  e.  _V )
108, 9syl 17 . . . . 5  |-  ( Y  e.  C  ->  X  e.  _V )
1110adantr 466 . . . 4  |-  ( ( Y  e.  C  /\  ps )  ->  X  e. 
_V )
12 simpl 458 . . . 4  |-  ( ( Y  e.  C  /\  ps )  ->  Y  e.  C )
13 simpr 462 . . . 4  |-  ( ( Y  e.  C  /\  ps )  ->  ps )
1411, 12, 133jca 1185 . . 3  |-  ( ( Y  e.  C  /\  ps )  ->  ( X  e.  _V  /\  Y  e.  C  /\  ps )
)
157, 14impbii 190 . 2  |-  ( ( X  e.  _V  /\  Y  e.  C  /\  ps )  <->  ( Y  e.  C  /\  ps )
)
166, 15bitri 252 1  |-  ( Y  e.  ( F `  X )  <->  ( Y  e.  C  /\  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   {crab 2777   _Vcvv 3078    |-> cmpt 4475   ` cfv 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fv 5600
This theorem is referenced by:  isfil  20799  isufil  20855
  Copyright terms: Public domain W3C validator