MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab Structured version   Unicode version

Theorem elmptrab 20773
Description: Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Hypotheses
Ref Expression
elmptrab.f  |-  F  =  ( x  e.  D  |->  { y  e.  B  |  ph } )
elmptrab.s1  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
elmptrab.s2  |-  ( x  =  X  ->  B  =  C )
elmptrab.ex  |-  ( x  e.  D  ->  B  e.  V )
Assertion
Ref Expression
elmptrab  |-  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
)
Distinct variable groups:    x, y, X    y, B    x, C, y    x, D    x, V, y    x, Y, y    ps, x, y
Allowed substitution hints:    ph( x, y)    B( x)    D( y)    F( x, y)

Proof of Theorem elmptrab
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmptrab.f . . . 4  |-  F  =  ( x  e.  D  |->  { y  e.  B  |  ph } )
21dmmptss 5351 . . 3  |-  dom  F  C_  D
3 elfvdm 5907 . . 3  |-  ( Y  e.  ( F `  X )  ->  X  e.  dom  F )
42, 3sseldi 3468 . 2  |-  ( Y  e.  ( F `  X )  ->  X  e.  D )
5 simp1 1005 . 2  |-  ( ( X  e.  D  /\  Y  e.  C  /\  ps )  ->  X  e.  D )
6 csbeq1 3404 . . . . . 6  |-  ( z  =  X  ->  [_ z  /  x ]_ B  = 
[_ X  /  x ]_ B )
7 dfsbcq 3307 . . . . . 6  |-  ( z  =  X  ->  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. X  /  x ]. [. w  /  y ]. ph ) )
86, 7rabeqbidv 3082 . . . . 5  |-  ( z  =  X  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  =  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } )
9 nfcv 2591 . . . . . . 7  |-  F/_ z { y  e.  B  |  ph }
10 nfsbc1v 3325 . . . . . . . 8  |-  F/ x [. z  /  x ]. [. w  /  y ]. ph
11 nfcsb1v 3417 . . . . . . . 8  |-  F/_ x [_ z  /  x ]_ B
1210, 11nfrab 3017 . . . . . . 7  |-  F/_ x { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }
13 csbeq1a 3410 . . . . . . . . 9  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
14 sbceq1a 3316 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14rabeqbidv 3082 . . . . . . . 8  |-  ( x  =  z  ->  { y  e.  B  |  ph }  =  { y  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. ph }
)
16 nfcv 2591 . . . . . . . . 9  |-  F/_ w [_ z  /  x ]_ B
17 nfcv 2591 . . . . . . . . 9  |-  F/_ y [_ z  /  x ]_ B
18 nfcv 2591 . . . . . . . . . 10  |-  F/_ y
z
19 nfsbc1v 3325 . . . . . . . . . 10  |-  F/ y
[. w  /  y ]. ph
2018, 19nfsbc 3327 . . . . . . . . 9  |-  F/ y
[. z  /  x ]. [. w  /  y ]. ph
21 nfv 1754 . . . . . . . . 9  |-  F/ w [. z  /  x ]. ph
22 sbceq1a 3316 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( [. z  /  x ]. ph  <->  [. w  /  y ]. [. z  /  x ]. ph ) )
2322equcoms 1847 . . . . . . . . . 10  |-  ( w  =  y  ->  ( [. z  /  x ]. ph  <->  [. w  /  y ]. [. z  /  x ]. ph ) )
24 sbccom 3377 . . . . . . . . . 10  |-  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. w  / 
y ]. [. z  /  x ]. ph )
2523, 24syl6rbbr 267 . . . . . . . . 9  |-  ( w  =  y  ->  ( [. z  /  x ]. [. w  /  y ]. ph  <->  [. z  /  x ]. ph ) )
2616, 17, 20, 21, 25cbvrab 3085 . . . . . . . 8  |-  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  =  { y  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. ph }
2715, 26syl6eqr 2488 . . . . . . 7  |-  ( x  =  z  ->  { y  e.  B  |  ph }  =  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }
)
289, 12, 27cbvmpt 4517 . . . . . 6  |-  ( x  e.  D  |->  { y  e.  B  |  ph } )  =  ( z  e.  D  |->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph } )
291, 28eqtri 2458 . . . . 5  |-  F  =  ( z  e.  D  |->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph } )
30 nfv 1754 . . . . . . . 8  |-  F/ x  z  e.  D
3111nfel1 2607 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ B  e.  V
3230, 31nfim 1978 . . . . . . 7  |-  F/ x
( z  e.  D  ->  [_ z  /  x ]_ B  e.  V
)
33 eleq1 2501 . . . . . . . 8  |-  ( x  =  z  ->  (
x  e.  D  <->  z  e.  D ) )
3413eleq1d 2498 . . . . . . . 8  |-  ( x  =  z  ->  ( B  e.  V  <->  [_ z  /  x ]_ B  e.  V
) )
3533, 34imbi12d 321 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  D  ->  B  e.  V )  <-> 
( z  e.  D  ->  [_ z  /  x ]_ B  e.  V
) ) )
36 elmptrab.ex . . . . . . 7  |-  ( x  e.  D  ->  B  e.  V )
3732, 35, 36chvar 2069 . . . . . 6  |-  ( z  e.  D  ->  [_ z  /  x ]_ B  e.  V )
38 rabexg 4575 . . . . . 6  |-  ( [_ z  /  x ]_ B  e.  V  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  e.  _V )
3937, 38syl 17 . . . . 5  |-  ( z  e.  D  ->  { w  e.  [_ z  /  x ]_ B  |  [. z  /  x ]. [. w  /  y ]. ph }  e.  _V )
408, 29, 39fvmpt3 5968 . . . 4  |-  ( X  e.  D  ->  ( F `  X )  =  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } )
4140eleq2d 2499 . . 3  |-  ( X  e.  D  ->  ( Y  e.  ( F `  X )  <->  Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph } ) )
42 dfsbcq 3307 . . . . . . 7  |-  ( w  =  Y  ->  ( [. w  /  y ]. ph  <->  [. Y  /  y ]. ph ) )
4342sbcbidv 3360 . . . . . 6  |-  ( w  =  Y  ->  ( [. X  /  x ]. [. w  /  y ]. ph  <->  [. X  /  x ]. [. Y  /  y ]. ph ) )
4443elrab 3235 . . . . 5  |-  ( Y  e.  { w  e. 
[_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph ) )
4544a1i 11 . . . 4  |-  ( X  e.  D  ->  ( Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph ) ) )
46 nfcvd 2592 . . . . . . 7  |-  ( X  e.  D  ->  F/_ x C )
47 elmptrab.s2 . . . . . . 7  |-  ( x  =  X  ->  B  =  C )
4846, 47csbiegf 3425 . . . . . 6  |-  ( X  e.  D  ->  [_ X  /  x ]_ B  =  C )
4948eleq2d 2499 . . . . 5  |-  ( X  e.  D  ->  ( Y  e.  [_ X  /  x ]_ B  <->  Y  e.  C ) )
5049anbi1d 709 . . . 4  |-  ( X  e.  D  ->  (
( Y  e.  [_ X  /  x ]_ B  /\  [. X  /  x ]. [. Y  /  y ]. ph )  <->  ( Y  e.  C  /\  [. X  /  x ]. [. Y  /  y ]. ph )
) )
51 nfv 1754 . . . . . 6  |-  F/ x ps
52 nfv 1754 . . . . . 6  |-  F/ y ps
53 nfv 1754 . . . . . 6  |-  F/ x  Y  e.  C
54 elmptrab.s1 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ph  <->  ps )
)
5551, 52, 53, 54sbc2iegf 3372 . . . . 5  |-  ( ( X  e.  D  /\  Y  e.  C )  ->  ( [. X  /  x ]. [. Y  / 
y ]. ph  <->  ps )
)
5655pm5.32da 645 . . . 4  |-  ( X  e.  D  ->  (
( Y  e.  C  /\  [. X  /  x ]. [. Y  /  y ]. ph )  <->  ( Y  e.  C  /\  ps )
) )
5745, 50, 563bitrd 282 . . 3  |-  ( X  e.  D  ->  ( Y  e.  { w  e.  [_ X  /  x ]_ B  |  [. X  /  x ]. [. w  /  y ]. ph }  <->  ( Y  e.  C  /\  ps ) ) )
58 3anass 986 . . . 4  |-  ( ( X  e.  D  /\  Y  e.  C  /\  ps )  <->  ( X  e.  D  /\  ( Y  e.  C  /\  ps ) ) )
5958baibr 912 . . 3  |-  ( X  e.  D  ->  (
( Y  e.  C  /\  ps )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
) )
6041, 57, 593bitrd 282 . 2  |-  ( X  e.  D  ->  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
) )
614, 5, 60pm5.21nii 354 1  |-  ( Y  e.  ( F `  X )  <->  ( X  e.  D  /\  Y  e.  C  /\  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   {crab 2786   _Vcvv 3087   [.wsbc 3305   [_csb 3401    |-> cmpt 4484   dom cdm 4854   ` cfv 5601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fv 5609
This theorem is referenced by:  elmptrab2  20774  isfbas  20775
  Copyright terms: Public domain W3C validator