MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Unicode version

Theorem elmapssres 7346
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D )  e.  ( B  ^m  D ) )

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 7343 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
2 fssres 5685 . . 3  |-  ( ( A : C --> B  /\  D  C_  C )  -> 
( A  |`  D ) : D --> B )
31, 2sylan 471 . 2  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D ) : D --> B )
4 elmapex 7342 . . . . 5  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
54simpld 459 . . . 4  |-  ( A  e.  ( B  ^m  C )  ->  B  e.  _V )
65adantr 465 . . 3  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  ->  B  e.  _V )
74simprd 463 . . . 4  |-  ( A  e.  ( B  ^m  C )  ->  C  e.  _V )
8 ssexg 4545 . . . . 5  |-  ( ( D  C_  C  /\  C  e.  _V )  ->  D  e.  _V )
98ancoms 453 . . . 4  |-  ( ( C  e.  _V  /\  D  C_  C )  ->  D  e.  _V )
107, 9sylan 471 . . 3  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  ->  D  e.  _V )
11 elmapg 7336 . . 3  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( ( A  |`  D )  e.  ( B  ^m  D )  <-> 
( A  |`  D ) : D --> B ) )
126, 10, 11syl2anc 661 . 2  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( ( A  |`  D )  e.  ( B  ^m  D )  <-> 
( A  |`  D ) : D --> B ) )
133, 12mpbird 232 1  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D )  e.  ( B  ^m  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   _Vcvv 3076    C_ wss 3435    |` cres 4949   -->wf 5521  (class class class)co 6199    ^m cmap 7323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-map 7325
This theorem is referenced by:  mdetmul  18560  mapfzcons1cl  29201  mzpcompact2lem  29235  diophin  29258  eldiophss  29260  eldioph4b  29297  nn0gsumfz  30955  lincresunit3lem2  31132
  Copyright terms: Public domain W3C validator