MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Visualization version   Unicode version

Theorem elmapssres 7482
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D )  e.  ( B  ^m  D ) )

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 7479 . . 3  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
2 fssres 5731 . . 3  |-  ( ( A : C --> B  /\  D  C_  C )  -> 
( A  |`  D ) : D --> B )
31, 2sylan 478 . 2  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D ) : D --> B )
4 elmapex 7478 . . . . 5  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
54simpld 465 . . . 4  |-  ( A  e.  ( B  ^m  C )  ->  B  e.  _V )
65adantr 471 . . 3  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  ->  B  e.  _V )
74simprd 469 . . . 4  |-  ( A  e.  ( B  ^m  C )  ->  C  e.  _V )
8 ssexg 4520 . . . . 5  |-  ( ( D  C_  C  /\  C  e.  _V )  ->  D  e.  _V )
98ancoms 459 . . . 4  |-  ( ( C  e.  _V  /\  D  C_  C )  ->  D  e.  _V )
107, 9sylan 478 . . 3  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  ->  D  e.  _V )
116, 10elmapd 7472 . 2  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( ( A  |`  D )  e.  ( B  ^m  D )  <-> 
( A  |`  D ) : D --> B ) )
123, 11mpbird 240 1  |-  ( ( A  e.  ( B  ^m  C )  /\  D  C_  C )  -> 
( A  |`  D )  e.  ( B  ^m  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    e. wcel 1890   _Vcvv 3012    C_ wss 3371    |` cres 4813   -->wf 5556  (class class class)co 6275    ^m cmap 7458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-8 1892  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-sep 4496  ax-nul 4505  ax-pow 4553  ax-pr 4611  ax-un 6570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3014  df-sbc 3235  df-csb 3331  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-nul 3699  df-if 3849  df-pw 3920  df-sn 3936  df-pr 3938  df-op 3942  df-uni 4168  df-iun 4249  df-br 4374  df-opab 4433  df-mpt 4434  df-id 4726  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5524  df-fun 5562  df-fn 5563  df-f 5564  df-fv 5568  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6780  df-2nd 6781  df-map 7460
This theorem is referenced by:  nn0gsumfz  17623  mdetmul  19658  mapfzcons1cl  35561  mzpcompact2lem  35594  diophin  35616  eldiophss  35618  eldioph4b  35655  mccllem  37718  iccpartres  38822  lincresunit3lem2  40597
  Copyright terms: Public domain W3C validator