Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapresaunres2 Structured version   Unicode version

Theorem elmapresaunres2 30906
Description: fresaunres2 5678 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
elmapresaunres2  |-  ( ( F  e.  ( C  ^m  A )  /\  G  e.  ( C  ^m  B )  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( ( F  u.  G )  |`  B )  =  G )

Proof of Theorem elmapresaunres2
StepHypRef Expression
1 elmapi 7377 . 2  |-  ( F  e.  ( C  ^m  A )  ->  F : A --> C )
2 elmapi 7377 . 2  |-  ( G  e.  ( C  ^m  B )  ->  G : B --> C )
3 id 22 . 2  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B
) ) )
4 fresaunres2 5678 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  B )  =  G )
51, 2, 3, 4syl3an 1268 1  |-  ( ( F  e.  ( C  ^m  A )  /\  G  e.  ( C  ^m  B )  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( ( F  u.  G )  |`  B )  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1399    e. wcel 1836    u. cun 3400    i^i cin 3401    |` cres 4928   -->wf 5505  (class class class)co 6214    ^m cmap 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-fv 5517  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-1st 6717  df-2nd 6718  df-map 7358
This theorem is referenced by:  diophin  30907  eldioph4b  30946
  Copyright terms: Public domain W3C validator