MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapfun Structured version   Unicode version

Theorem elmapfun 7257
Description: A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Assertion
Ref Expression
elmapfun  |-  ( A  e.  ( B  ^m  C )  ->  Fun  A )

Proof of Theorem elmapfun
StepHypRef Expression
1 elmapi 7255 . 2  |-  ( A  e.  ( B  ^m  C )  ->  A : C --> B )
2 ffun 5582 . 2  |-  ( A : C --> B  ->  Fun  A )
31, 2syl 16 1  |-  ( A  e.  ( B  ^m  C )  ->  Fun  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   Fun wfun 5433   -->wf 5435  (class class class)co 6112    ^m cmap 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-map 7237
This theorem is referenced by:  frlmbas  18202  islindf4  18289  eulerpartgbij  26777  fsfnn0gsumfsffz  30836  lincext2  30986
  Copyright terms: Public domain W3C validator