MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapex Unicode version

Theorem elmapex 6996
Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
elmapex  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )

Proof of Theorem elmapex
StepHypRef Expression
1 n0i 3593 . 2  |-  ( A  e.  ( B  ^m  C )  ->  -.  ( B  ^m  C )  =  (/) )
2 fnmap 6984 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
3 fndm 5503 . . . 4  |-  (  ^m  Fn  ( _V  X.  _V )  ->  dom  ^m  =  ( _V  X.  _V )
)
42, 3ax-mp 8 . . 3  |-  dom  ^m  =  ( _V  X.  _V )
54ndmov 6190 . 2  |-  ( -.  ( B  e.  _V  /\  C  e.  _V )  ->  ( B  ^m  C
)  =  (/) )
61, 5nsyl2 121 1  |-  ( A  e.  ( B  ^m  C )  ->  ( B  e.  _V  /\  C  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588    X. cxp 4835   dom cdm 4837    Fn wfn 5408  (class class class)co 6040    ^m cmap 6977
This theorem is referenced by:  elmapi  6997  mapsspm  7006  mapss  7015  mapdom1  7231  wemapwe  7610  isf34lem6  8216  ralxpmap  26632  elmapssres  26661  mapfzcons  26662  elmapresaun  26719  mndvcl  27314  mndvass  27315  mndvlid  27316  mndvrid  27317  grpvlinv  27318  grpvrinv  27319  mhmvlin  27320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-map 6979
  Copyright terms: Public domain W3C validator