Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellspd Unicode version

Theorem ellspd 27122
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.)
Hypotheses
Ref Expression
ellspd.n  |-  N  =  ( LSpan `  M )
ellspd.v  |-  B  =  ( Base `  M
)
ellspd.k  |-  K  =  ( Base `  S
)
ellspd.s  |-  S  =  (Scalar `  M )
ellspd.z  |-  .0.  =  ( 0g `  S )
ellspd.t  |-  .x.  =  ( .s `  M )
ellspd.f  |-  ( ph  ->  F : I --> B )
ellspd.m  |-  ( ph  ->  M  e.  LMod )
ellspd.i  |-  ( ph  ->  I  e.  _V )
Assertion
Ref Expression
ellspd  |-  ( ph  ->  ( X  e.  ( N `  ( F
" I ) )  <->  E. f  e.  ( K  ^m  I ) ( ( `' f "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  X  =  ( M  gsumg  ( f  o F 
.x.  F ) ) ) ) )
Distinct variable groups:    f, M    B, f    f, N    f, K    S, f    .0. , f    .x. , f    f, F    f, I    f, X    ph, f

Proof of Theorem ellspd
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6  |-  ( ph  ->  F : I --> B )
2 ffn 5550 . . . . . 6  |-  ( F : I --> B  ->  F  Fn  I )
3 fnima 5522 . . . . . 6  |-  ( F  Fn  I  ->  ( F " I )  =  ran  F )
41, 2, 33syl 19 . . . . 5  |-  ( ph  ->  ( F " I
)  =  ran  F
)
54fveq2d 5691 . . . 4  |-  ( ph  ->  ( N `  ( F " I ) )  =  ( N `  ran  F ) )
6 eqid 2404 . . . . . 6  |-  ( f  e.  ( Base `  ( S freeLMod  I ) )  |->  ( M  gsumg  ( f  o F 
.x.  F ) ) )  =  ( f  e.  ( Base `  ( S freeLMod  I ) )  |->  ( M  gsumg  ( f  o F 
.x.  F ) ) )
76rnmpt 5075 . . . . 5  |-  ran  (
f  e.  ( Base `  ( S freeLMod  I )
)  |->  ( M  gsumg  ( f  o F  .x.  F
) ) )  =  { a  |  E. f  e.  ( Base `  ( S freeLMod  I )
) a  =  ( M  gsumg  ( f  o F 
.x.  F ) ) }
8 eqid 2404 . . . . . 6  |-  ( S freeLMod  I )  =  ( S freeLMod  I )
9 eqid 2404 . . . . . 6  |-  ( Base `  ( S freeLMod  I )
)  =  ( Base `  ( S freeLMod  I )
)
10 ellspd.v . . . . . 6  |-  B  =  ( Base `  M
)
11 ellspd.t . . . . . 6  |-  .x.  =  ( .s `  M )
12 ellspd.m . . . . . 6  |-  ( ph  ->  M  e.  LMod )
13 ellspd.i . . . . . 6  |-  ( ph  ->  I  e.  _V )
14 ellspd.s . . . . . . 7  |-  S  =  (Scalar `  M )
1514a1i 11 . . . . . 6  |-  ( ph  ->  S  =  (Scalar `  M ) )
16 ellspd.n . . . . . 6  |-  N  =  ( LSpan `  M )
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 27120 . . . . 5  |-  ( ph  ->  ran  ( f  e.  ( Base `  ( S freeLMod  I ) )  |->  ( M  gsumg  ( f  o F 
.x.  F ) ) )  =  ( N `
 ran  F )
)
187, 17syl5eqr 2450 . . . 4  |-  ( ph  ->  { a  |  E. f  e.  ( Base `  ( S freeLMod  I )
) a  =  ( M  gsumg  ( f  o F 
.x.  F ) ) }  =  ( N `
 ran  F )
)
195, 18eqtr4d 2439 . . 3  |-  ( ph  ->  ( N `  ( F " I ) )  =  { a  |  E. f  e.  (
Base `  ( S freeLMod  I ) ) a  =  ( M  gsumg  ( f  o F 
.x.  F ) ) } )
2019eleq2d 2471 . 2  |-  ( ph  ->  ( X  e.  ( N `  ( F
" I ) )  <-> 
X  e.  { a  |  E. f  e.  ( Base `  ( S freeLMod  I ) ) a  =  ( M  gsumg  ( f  o F  .x.  F
) ) } ) )
21 ovex 6065 . . . . . 6  |-  ( M 
gsumg  ( f  o F 
.x.  F ) )  e.  _V
22 eleq1 2464 . . . . . 6  |-  ( X  =  ( M  gsumg  ( f  o F  .x.  F
) )  ->  ( X  e.  _V  <->  ( M  gsumg  ( f  o F  .x.  F ) )  e. 
_V ) )
2321, 22mpbiri 225 . . . . 5  |-  ( X  =  ( M  gsumg  ( f  o F  .x.  F
) )  ->  X  e.  _V )
2423rexlimivw 2786 . . . 4  |-  ( E. f  e.  ( Base `  ( S freeLMod  I )
) X  =  ( M  gsumg  ( f  o F 
.x.  F ) )  ->  X  e.  _V )
25 eqeq1 2410 . . . . 5  |-  ( a  =  X  ->  (
a  =  ( M 
gsumg  ( f  o F 
.x.  F ) )  <-> 
X  =  ( M 
gsumg  ( f  o F 
.x.  F ) ) ) )
2625rexbidv 2687 . . . 4  |-  ( a  =  X  ->  ( E. f  e.  ( Base `  ( S freeLMod  I ) ) a  =  ( M  gsumg  ( f  o F 
.x.  F ) )  <->  E. f  e.  ( Base `  ( S freeLMod  I ) ) X  =  ( M  gsumg  ( f  o F 
.x.  F ) ) ) )
2724, 26elab3 3049 . . 3  |-  ( X  e.  { a  |  E. f  e.  (
Base `  ( S freeLMod  I ) ) a  =  ( M  gsumg  ( f  o F 
.x.  F ) ) }  <->  E. f  e.  (
Base `  ( S freeLMod  I ) ) X  =  ( M  gsumg  ( f  o F 
.x.  F ) ) )
28 fvex 5701 . . . . . . . 8  |-  (Scalar `  M )  e.  _V
2914, 28eqeltri 2474 . . . . . . 7  |-  S  e. 
_V
30 ellspd.k . . . . . . . 8  |-  K  =  ( Base `  S
)
31 ellspd.z . . . . . . . 8  |-  .0.  =  ( 0g `  S )
32 eqid 2404 . . . . . . . 8  |-  { a  e.  ( K  ^m  I )  |  ( `' a " ( _V  \  {  .0.  }
) )  e.  Fin }  =  { a  e.  ( K  ^m  I
)  |  ( `' a " ( _V 
\  {  .0.  }
) )  e.  Fin }
338, 30, 31, 32frlmbas 27091 . . . . . . 7  |-  ( ( S  e.  _V  /\  I  e.  _V )  ->  { a  e.  ( K  ^m  I )  |  ( `' a
" ( _V  \  {  .0.  } ) )  e.  Fin }  =  ( Base `  ( S freeLMod  I ) ) )
3429, 13, 33sylancr 645 . . . . . 6  |-  ( ph  ->  { a  e.  ( K  ^m  I )  |  ( `' a
" ( _V  \  {  .0.  } ) )  e.  Fin }  =  ( Base `  ( S freeLMod  I ) ) )
3534eqcomd 2409 . . . . 5  |-  ( ph  ->  ( Base `  ( S freeLMod  I ) )  =  { a  e.  ( K  ^m  I )  |  ( `' a
" ( _V  \  {  .0.  } ) )  e.  Fin } )
3635rexeqdv 2871 . . . 4  |-  ( ph  ->  ( E. f  e.  ( Base `  ( S freeLMod  I ) ) X  =  ( M  gsumg  ( f  o F  .x.  F
) )  <->  E. f  e.  { a  e.  ( K  ^m  I )  |  ( `' a
" ( _V  \  {  .0.  } ) )  e.  Fin } X  =  ( M  gsumg  ( f  o F  .x.  F
) ) ) )
37 cnveq 5005 . . . . . . 7  |-  ( a  =  f  ->  `' a  =  `' f
)
3837imaeq1d 5161 . . . . . 6  |-  ( a  =  f  ->  ( `' a " ( _V  \  {  .0.  }
) )  =  ( `' f " ( _V  \  {  .0.  }
) ) )
3938eleq1d 2470 . . . . 5  |-  ( a  =  f  ->  (
( `' a "
( _V  \  {  .0.  } ) )  e. 
Fin 
<->  ( `' f "
( _V  \  {  .0.  } ) )  e. 
Fin ) )
4039rexrab 3058 . . . 4  |-  ( E. f  e.  { a  e.  ( K  ^m  I )  |  ( `' a " ( _V  \  {  .0.  }
) )  e.  Fin } X  =  ( M 
gsumg  ( f  o F 
.x.  F ) )  <->  E. f  e.  ( K  ^m  I ) ( ( `' f "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  X  =  ( M  gsumg  ( f  o F 
.x.  F ) ) ) )
4136, 40syl6bb 253 . . 3  |-  ( ph  ->  ( E. f  e.  ( Base `  ( S freeLMod  I ) ) X  =  ( M  gsumg  ( f  o F  .x.  F
) )  <->  E. f  e.  ( K  ^m  I
) ( ( `' f " ( _V 
\  {  .0.  }
) )  e.  Fin  /\  X  =  ( M 
gsumg  ( f  o F 
.x.  F ) ) ) ) )
4227, 41syl5bb 249 . 2  |-  ( ph  ->  ( X  e.  {
a  |  E. f  e.  ( Base `  ( S freeLMod  I ) ) a  =  ( M  gsumg  ( f  o F  .x.  F
) ) }  <->  E. f  e.  ( K  ^m  I
) ( ( `' f " ( _V 
\  {  .0.  }
) )  e.  Fin  /\  X  =  ( M 
gsumg  ( f  o F 
.x.  F ) ) ) ) )
4320, 42bitrd 245 1  |-  ( ph  ->  ( X  e.  ( N `  ( F
" I ) )  <->  E. f  e.  ( K  ^m  I ) ( ( `' f "
( _V  \  {  .0.  } ) )  e. 
Fin  /\  X  =  ( M  gsumg  ( f  o F 
.x.  F ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277   {csn 3774    e. cmpt 4226   `'ccnv 4836   ran crn 4838   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262    ^m cmap 6977   Fincfn 7068   Basecbs 13424  Scalarcsca 13487   .scvsca 13488   0gc0g 13678    gsumg cgsu 13679   LModclmod 15905   LSpanclspn 16002   freeLMod cfrlm 27080
This theorem is referenced by:  elfilspd  27123  islindf4  27176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-fzo 11091  df-seq 11279  df-hash 11574  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-pws 13628  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lmhm 16053  df-lbs 16102  df-sra 16199  df-rgmod 16200  df-nzr 16284  df-dsmm 27066  df-frlm 27082  df-uvc 27083
  Copyright terms: Public domain W3C validator