HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnop Structured version   Unicode version

Theorem ellnop 25267
Description: Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnop  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
Distinct variable group:    x, y, z, T

Proof of Theorem ellnop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5695 . . . . . 6  |-  ( t  =  T  ->  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( T `  ( ( x  .h  y )  +h  z
) ) )
2 fveq1 5695 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
32oveq2d 6112 . . . . . . 7  |-  ( t  =  T  ->  (
x  .h  ( t `
 y ) )  =  ( x  .h  ( T `  y
) ) )
4 fveq1 5695 . . . . . . 7  |-  ( t  =  T  ->  (
t `  z )  =  ( T `  z ) )
53, 4oveq12d 6114 . . . . . 6  |-  ( t  =  T  ->  (
( x  .h  (
t `  y )
)  +h  ( t `
 z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
61, 5eqeq12d 2457 . . . . 5  |-  ( t  =  T  ->  (
( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( t `
 y ) )  +h  ( t `  z ) )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
76ralbidv 2740 . . . 4  |-  ( t  =  T  ->  ( A. z  e.  ~H  ( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( t `
 y ) )  +h  ( t `  z ) )  <->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
872ralbidv 2762 . . 3  |-  ( t  =  T  ->  ( A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( t `  y ) )  +h  ( t `  z
) )  <->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
9 df-lnop 25250 . . 3  |-  LinOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( t `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
t `  y )
)  +h  ( t `
 z ) ) }
108, 9elrab2 3124 . 2  |-  ( T  e.  LinOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
11 ax-hilex 24406 . . . 4  |-  ~H  e.  _V
1211, 11elmap 7246 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1312anbi1i 695 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )  <->  ( T : ~H
--> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
1410, 13bitri 249 1  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   -->wf 5419   ` cfv 5423  (class class class)co 6096    ^m cmap 7219   CCcc 9285   ~Hchil 24326    +h cva 24327    .h csm 24328   LinOpclo 24354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-hilex 24406
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221  df-lnop 25250
This theorem is referenced by:  lnopf  25268  lnopl  25323  unoplin  25329  hmoplin  25351  lnopmi  25409  lnophsi  25410  lnopcoi  25412  cnlnadjlem6  25481  adjlnop  25495
  Copyright terms: Public domain W3C validator