HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnop Structured version   Unicode version

Theorem ellnop 26642
Description: Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnop  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
Distinct variable group:    x, y, z, T

Proof of Theorem ellnop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5851 . . . . . 6  |-  ( t  =  T  ->  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( T `  ( ( x  .h  y )  +h  z
) ) )
2 fveq1 5851 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
32oveq2d 6293 . . . . . . 7  |-  ( t  =  T  ->  (
x  .h  ( t `
 y ) )  =  ( x  .h  ( T `  y
) ) )
4 fveq1 5851 . . . . . . 7  |-  ( t  =  T  ->  (
t `  z )  =  ( T `  z ) )
53, 4oveq12d 6295 . . . . . 6  |-  ( t  =  T  ->  (
( x  .h  (
t `  y )
)  +h  ( t `
 z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
61, 5eqeq12d 2463 . . . . 5  |-  ( t  =  T  ->  (
( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( t `
 y ) )  +h  ( t `  z ) )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
76ralbidv 2880 . . . 4  |-  ( t  =  T  ->  ( A. z  e.  ~H  ( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( t `
 y ) )  +h  ( t `  z ) )  <->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
872ralbidv 2885 . . 3  |-  ( t  =  T  ->  ( A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( t `  y ) )  +h  ( t `  z
) )  <->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
9 df-lnop 26625 . . 3  |-  LinOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( t `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
t `  y )
)  +h  ( t `
 z ) ) }
108, 9elrab2 3243 . 2  |-  ( T  e.  LinOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
11 ax-hilex 25781 . . . 4  |-  ~H  e.  _V
1211, 11elmap 7445 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1312anbi1i 695 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )  <->  ( T : ~H
--> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
1410, 13bitri 249 1  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   -->wf 5570   ` cfv 5574  (class class class)co 6277    ^m cmap 7418   CCcc 9488   ~Hchil 25701    +h cva 25702    .h csm 25703   LinOpclo 25729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-hilex 25781
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-map 7420  df-lnop 26625
This theorem is referenced by:  lnopf  26643  lnopl  26698  unoplin  26704  hmoplin  26726  lnopmi  26784  lnophsi  26785  lnopcoi  26787  cnlnadjlem6  26856  adjlnop  26870
  Copyright terms: Public domain W3C validator