Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellines Structured version   Unicode version

Theorem ellines 30477
Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
ellines  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) )
Distinct variable group:    A, n, p, q

Proof of Theorem ellines
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 3067 . 2  |-  ( A  e. LinesEE  ->  A  e.  _V )
2 ovex 6305 . . . . . . 7  |-  ( pLine q )  e.  _V
3 eleq1 2474 . . . . . . 7  |-  ( A  =  ( pLine q
)  ->  ( A  e.  _V  <->  ( pLine q
)  e.  _V )
)
42, 3mpbiri 233 . . . . . 6  |-  ( A  =  ( pLine q
)  ->  A  e.  _V )
54adantl 464 . . . . 5  |-  ( ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
65rexlimivw 2892 . . . 4  |-  ( E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
76a1i 11 . . 3  |-  ( ( n  e.  NN  /\  p  e.  ( EE `  n ) )  -> 
( E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V ) )
87rexlimivv 2900 . 2  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) )  ->  A  e.  _V )
9 eleq1 2474 . . 3  |-  ( x  =  A  ->  (
x  e. LinesEE  <->  A  e. LinesEE ) )
10 eqeq1 2406 . . . . . 6  |-  ( x  =  A  ->  (
x  =  ( pLine q )  <->  A  =  ( pLine q ) ) )
1110anbi2d 702 . . . . 5  |-  ( x  =  A  ->  (
( p  =/=  q  /\  x  =  (
pLine q ) )  <-> 
( p  =/=  q  /\  A  =  (
pLine q ) ) ) )
1211rexbidv 2917 . . . 4  |-  ( x  =  A  ->  ( E. q  e.  ( EE `  n ) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
13122rexbidv 2924 . . 3  |-  ( x  =  A  ->  ( E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n  e.  NN  E. p  e.  ( EE `  n
) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
14 df-lines2 30464 . . . . . 6  |- LinesEE  =  ran Line
15 df-line2 30462 . . . . . . 7  |- Line  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1615rneqi 5049 . . . . . 6  |-  ran Line  =  ran  {
<. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
17 rnoprab 6365 . . . . . 6  |-  ran  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  =  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1814, 16, 173eqtri 2435 . . . . 5  |- LinesEE  =  {
x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n
)  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }
1918eleq2i 2480 . . . 4  |-  ( x  e. LinesEE 
<->  x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) } )
20 abid 2389 . . . . 5  |-  ( x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  <->  E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )
21 df-rex 2759 . . . . . . 7  |-  ( E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. n
( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
22212exbii 1689 . . . . . 6  |-  ( E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
23 exrot3 1876 . . . . . . 7  |-  ( E. n E. p E. q ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) )  <->  E. p E. q E. n ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
24 r2ex 2929 . . . . . . . 8  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n E. p
( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  E. q  e.  ( EE `  n ) ( p  =/=  q  /\  x  =  ( pLine q
) ) ) )
25 r19.42v 2961 . . . . . . . . . 10  |-  ( E. q  e.  ( EE
`  n ) ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) ) )
26 df-rex 2759 . . . . . . . . . 10  |-  ( E. q  e.  ( EE
`  n ) ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. q
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
2725, 26bitr3i 251 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. q
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
28272exbii 1689 . . . . . . . 8  |-  ( E. n E. p ( ( n  e.  NN  /\  p  e.  ( EE
`  n ) )  /\  E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )  <->  E. n E. p E. q ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
2924, 28bitri 249 . . . . . . 7  |-  ( E. n  e.  NN  E. p  e.  ( EE `  n ) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) )  <->  E. n E. p E. q ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
30 anass 647 . . . . . . . . . 10  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) )  <->  ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
31 anass 647 . . . . . . . . . . 11  |-  ( ( ( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  /\  x  =  ( pLine q ) )  <->  ( (
q  e.  ( EE
`  n )  /\  ( n  e.  NN  /\  p  e.  ( EE
`  n ) ) )  /\  ( p  =/=  q  /\  x  =  ( pLine q
) ) ) )
32 simplrl 762 . . . . . . . . . . . . . 14  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  n  e.  NN )
33 simplrr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  p  e.  ( EE `  n ) )
34 simpll 752 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
q  e.  ( EE
`  n ) )
35 simpr 459 . . . . . . . . . . . . . . 15  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  ->  p  =/=  q )
3633, 34, 353jca 1177 . . . . . . . . . . . . . 14  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )
3732, 36jca 530 . . . . . . . . . . . . 13  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  -> 
( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) ) )
38 simpr2 1004 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
q  e.  ( EE
`  n ) )
39 simpl 455 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  n  e.  NN )
40 simpr1 1003 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  p  e.  ( EE `  n ) )
4138, 39, 40jca32 533 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) ) )
42 simpr3 1005 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  ->  p  =/=  q )
4341, 42jca 530 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q ) )
4437, 43impbii 188 . . . . . . . . . . . 12  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  <->  ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n
)  /\  p  =/=  q ) ) )
4544anbi1i 693 . . . . . . . . . . 11  |-  ( ( ( ( q  e.  ( EE `  n
)  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  p  =/=  q )  /\  x  =  ( pLine q ) )  <->  ( (
n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
4631, 45bitr3i 251 . . . . . . . . . 10  |-  ( ( ( q  e.  ( EE `  n )  /\  ( n  e.  NN  /\  p  e.  ( EE `  n
) ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) )  <->  ( ( n  e.  NN  /\  (
p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
4730, 46bitr3i 251 . . . . . . . . 9  |-  ( ( q  e.  ( EE
`  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) )  <->  ( ( n  e.  NN  /\  (
p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  ( pLine q ) ) )
48 fvline 30469 . . . . . . . . . . . 12  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( pLine q )  =  { x  |  x  Colinear  <. p ,  q
>. } )
49 opex 4654 . . . . . . . . . . . . . 14  |-  <. p ,  q >.  e.  _V
50 dfec2 7350 . . . . . . . . . . . . . 14  |-  ( <.
p ,  q >.  e.  _V  ->  [ <. p ,  q >. ] `'  Colinear  =  { x  |  <. p ,  q >. `'  Colinear  x } )
5149, 50ax-mp 5 . . . . . . . . . . . . 13  |-  [ <. p ,  q >. ] `'  Colinear  =  { x  |  <. p ,  q >. `'  Colinear  x }
52 vex 3061 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
5349, 52brcnv 5005 . . . . . . . . . . . . . 14  |-  ( <.
p ,  q >. `' 
Colinear  x  <->  x  Colinear  <. p ,  q >. )
5453abbii 2536 . . . . . . . . . . . . 13  |-  { x  |  <. p ,  q
>. `' 
Colinear  x }  =  {
x  |  x  Colinear  <. p ,  q >. }
5551, 54eqtri 2431 . . . . . . . . . . . 12  |-  [ <. p ,  q >. ] `'  Colinear  =  { x  |  x 
Colinear 
<. p ,  q >. }
5648, 55syl6eqr 2461 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( pLine q )  =  [ <. p ,  q >. ] `'  Colinear  )
5756eqeq2d 2416 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  -> 
( x  =  ( pLine q )  <->  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )
5857pm5.32i 635 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )  /\  x  =  ( pLine q
) )  <->  ( (
n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q ) )  /\  x  =  [ <. p ,  q >. ] `'  Colinear  ) )
59 anass 647 . . . . . . . . 9  |-  ( ( ( n  e.  NN  /\  ( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
) )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) ) )
6047, 58, 593bitrri 272 . . . . . . . 8  |-  ( ( n  e.  NN  /\  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <-> 
( q  e.  ( EE `  n )  /\  ( ( n  e.  NN  /\  p  e.  ( EE `  n
) )  /\  (
p  =/=  q  /\  x  =  ( pLine q ) ) ) ) )
61603exbii 1690 . . . . . . 7  |-  ( E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <->  E. p E. q E. n ( q  e.  ( EE `  n
)  /\  ( (
n  e.  NN  /\  p  e.  ( EE `  n ) )  /\  ( p  =/=  q  /\  x  =  (
pLine q ) ) ) ) )
6223, 29, 613bitr4ri 278 . . . . . 6  |-  ( E. p E. q E. n ( n  e.  NN  /\  ( ( p  e.  ( EE
`  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q )  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) )  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6322, 62bitri 249 . . . . 5  |-  ( E. p E. q E. n  e.  NN  (
( p  e.  ( EE `  n )  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  )  <->  E. n  e.  NN  E. p  e.  ( EE `  n
) E. q  e.  ( EE `  n
) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6420, 63bitri 249 . . . 4  |-  ( x  e.  { x  |  E. p E. q E. n  e.  NN  ( ( p  e.  ( EE `  n
)  /\  q  e.  ( EE `  n )  /\  p  =/=  q
)  /\  x  =  [ <. p ,  q
>. ] `'  Colinear  ) }  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
6519, 64bitri 249 . . 3  |-  ( x  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  x  =  ( pLine q ) ) )
669, 13, 65vtoclbg 3117 . 2  |-  ( A  e.  _V  ->  ( A  e. LinesEE  <->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) ) )
671, 8, 66pm5.21nii 351 1  |-  ( A  e. LinesEE 
<->  E. n  e.  NN  E. p  e.  ( EE
`  n ) E. q  e.  ( EE
`  n ) ( p  =/=  q  /\  A  =  ( pLine q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387    =/= wne 2598   E.wrex 2754   _Vcvv 3058   <.cop 3977   class class class wbr 4394   `'ccnv 4821   ran crn 4823   ` cfv 5568  (class class class)co 6277   {coprab 6278   [cec 7345   NNcn 10575   EEcee 24595    Colinear ccolin 30362  Linecline2 30459  LinesEEclines2 30461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-i2m1 9589  ax-1ne0 9590  ax-rrecex 9593  ax-cnre 9594
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-om 6683  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-ec 7349  df-nn 10576  df-colinear 30364  df-line2 30462  df-lines2 30464
This theorem is referenced by:  linethru  30478  hilbert1.1  30479
  Copyright terms: Public domain W3C validator