MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Visualization version   Unicode version

Theorem ellimc3 22834
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f  |-  ( ph  ->  F : A --> CC )
ellimc3.a  |-  ( ph  ->  A  C_  CC )
ellimc3.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
ellimc3  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z

Proof of Theorem ellimc3
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3  |-  ( ph  ->  F : A --> CC )
2 ellimc3.a . . 3  |-  ( ph  ->  A  C_  CC )
3 ellimc3.b . . 3  |-  ( ph  ->  B  e.  CC )
4 eqid 2451 . . 3  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
51, 2, 3, 4ellimc2 22832 . 2  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) ) )
6 cnxmet 21793 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
76a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
8 simplr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  C  e.  CC )
9 simpr 463 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
10 blcntr 21428 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  C  e.  CC  /\  x  e.  RR+ )  ->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
117, 8, 9, 10syl3anc 1268 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
12 rpxr 11309 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e. 
RR* )
1312adantl 468 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  x  e.  RR* )
144cnfldtopn 21802 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
1514blopn 21515 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  C  e.  CC  /\  x  e.  RR* )  ->  ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld ) )
167, 8, 13, 15syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld ) )
17 eleq2 2518 . . . . . . . . . . 11  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( C  e.  u  <->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
18 sseq2 3454 . . . . . . . . . . . . 13  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u  <->  ( F " ( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
1918anbi2d 710 . . . . . . . . . . . 12  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  u )  <->  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) ) ) )
2019rexbidv 2901 . . . . . . . . . . 11  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u )  <->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
2117, 20imbi12d 322 . . . . . . . . . 10  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u ) )  <->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2221rspcv 3146 . . . . . . . . 9  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2316, 22syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2411, 23mpid 42 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
2514mopni2 21508 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  E. y  e.  RR+  ( B (
ball `  ( abs  o. 
-  ) ) y )  C_  v )
266, 25mp3an1 1351 . . . . . . . . . 10  |-  ( ( v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  E. y  e.  RR+  ( B (
ball `  ( abs  o. 
-  ) ) y )  C_  v )
27 ssrin 3657 . . . . . . . . . . . . 13  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) )  C_  (
v  i^i  ( A  \  { B } ) ) )
28 imass2 5204 . . . . . . . . . . . . 13  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) 
C_  ( v  i^i  ( A  \  { B } ) )  -> 
( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) )  C_  ( F " ( v  i^i  ( A  \  { B }
) ) ) )
29 sstr2 3439 . . . . . . . . . . . . 13  |-  ( ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( F " ( v  i^i  ( A  \  { B } ) ) )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( F " ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3027, 28, 293syl 18 . . . . . . . . . . . 12  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3130com12 32 . . . . . . . . . . 11  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) ) )
3231reximdv 2861 . . . . . . . . . 10  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( E. y  e.  RR+  ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3326, 32syl5com 31 . . . . . . . . 9  |-  ( ( v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3433impr 625 . . . . . . . 8  |-  ( ( v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )
3534rexlimiva 2875 . . . . . . 7  |-  ( E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )
3624, 35syl6 34 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3736ralrimdva 2806 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3814mopni2 21508 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  E. x  e.  RR+  ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u )
396, 38mp3an1 1351 . . . . . . . . 9  |-  ( ( u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  E. x  e.  RR+  ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u )
40 r19.29r 2926 . . . . . . . . . . 11  |-  ( ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  /\  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. x  e.  RR+  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  /\  E. y  e.  RR+  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
416a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
423ad3antrrr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  B  e.  CC )
43 simpr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
4443rpxrd 11342 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  y  e.  RR* )
4514blopn 21515 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  CC  /\  y  e.  RR* )  ->  ( B ( ball `  ( abs  o.  -  ) ) y )  e.  (
TopOpen ` fld ) )
4641, 42, 44, 45syl3anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld ) )
47 blcntr 21428 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  CC  /\  y  e.  RR+ )  ->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )
4841, 42, 43, 47syl3anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )
49 eleq2 2518 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( B  e.  v  <->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
50 ineq1 3627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( v  i^i  ( A  \  { B } ) )  =  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )
5150imaeq2d 5168 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( F " ( v  i^i  ( A  \  { B }
) ) )  =  ( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) ) )
5251sseq1d 3459 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  <->  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
5349, 52anbi12d 717 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) )  <->  ( B  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) ) )
5453rspcev 3150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld )  /\  ( B  e.  ( B
( ball `  ( abs  o. 
-  ) ) y )  /\  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) )
5554expr 620 . . . . . . . . . . . . . . . 16  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld )  /\  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )  ->  ( ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
5646, 48, 55syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
5756rexlimdva 2879 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
58 sstr2 3439 . . . . . . . . . . . . . . . . 17  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) )
5958com12 32 . . . . . . . . . . . . . . . 16  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )
6059anim2d 569 . . . . . . . . . . . . . . 15  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) )  ->  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  u )
) )
6160reximdv 2861 . . . . . . . . . . . . . 14  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6257, 61syl9 73 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6362impd 433 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  (
( ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u  /\  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6463rexlimdva 2879 . . . . . . . . . . 11  |-  ( (
ph  /\  C  e.  CC )  ->  ( E. x  e.  RR+  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  /\  E. y  e.  RR+  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6540, 64syl5 33 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  /\  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6665expd 438 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6739, 66syl5 33 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6867expdimp 439 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  ( TopOpen ` fld ) )  ->  ( C  e.  u  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6968com23 81 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  ( TopOpen ` fld ) )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u ) ) ) )
7069ralrimdva 2806 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  A. u  e.  ( TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
7137, 70impbid 194 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  <->  A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
721ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  F : A --> CC )
73 ffun 5731 . . . . . . . . . 10  |-  ( F : A --> CC  ->  Fun 
F )
7472, 73syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  Fun  F )
75 inss2 3653 . . . . . . . . . 10  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  C_  ( A  \  { B }
)
76 difss 3560 . . . . . . . . . . 11  |-  ( A 
\  { B }
)  C_  A
77 fdm 5733 . . . . . . . . . . . 12  |-  ( F : A --> CC  ->  dom 
F  =  A )
7872, 77syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  dom  F  =  A )
7976, 78syl5sseqr 3481 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A  \  { B } )  C_  dom  F )
8075, 79syl5ss 3443 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) )  C_  dom  F )
81 funimass4 5916 . . . . . . . . 9  |-  ( ( Fun  F  /\  (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) 
C_  dom  F )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
8274, 80, 81syl2anc 667 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
836a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
84 simplrr 771 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
y  e.  RR+ )
8584rpxrd 11342 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
y  e.  RR* )
863ad3antrrr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  B  e.  CC )
8776, 2syl5ss 3443 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  \  { B } )  C_  CC )
8887ad2antrr 732 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A  \  { B } )  C_  CC )
8988sselda 3432 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  CC )
90 elbl3 21407 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  RR* )  /\  ( B  e.  CC  /\  z  e.  CC ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( z
( abs  o.  -  ) B )  <  y
) )
9183, 85, 86, 89, 90syl22anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( z
( abs  o.  -  ) B )  <  y
) )
92 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
9392cnmetdval 21791 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
9489, 86, 93syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
9594breq1d 4412 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( z ( abs  o.  -  ) B )  <  y  <->  ( abs `  ( z  -  B ) )  <  y ) )
9691, 95bitrd 257 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( abs `  ( z  -  B
) )  <  y
) )
97 simplrl 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  x  e.  RR+ )
9897rpxrd 11342 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  x  e.  RR* )
99 simpllr 769 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  C  e.  CC )
100 eldifi 3555 . . . . . . . . . . . . . 14  |-  ( z  e.  ( A  \  { B } )  -> 
z  e.  A )
101 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( F : A --> CC  /\  z  e.  A )  ->  ( F `  z
)  e.  CC )
10272, 100, 101syl2an 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  z
)  e.  CC )
103 elbl3 21407 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  RR* )  /\  ( C  e.  CC  /\  ( F `
 z )  e.  CC ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( ( F `  z )
( abs  o.  -  ) C )  <  x
) )
10483, 98, 99, 102, 103syl22anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( ( F `  z )
( abs  o.  -  ) C )  <  x
) )
10592cnmetdval 21791 . . . . . . . . . . . . . 14  |-  ( ( ( F `  z
)  e.  CC  /\  C  e.  CC )  ->  ( ( F `  z ) ( abs 
o.  -  ) C
)  =  ( abs `  ( ( F `  z )  -  C
) ) )
106102, 99, 105syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z ) ( abs 
o.  -  ) C
)  =  ( abs `  ( ( F `  z )  -  C
) ) )
107106breq1d 4412 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( F `
 z ) ( abs  o.  -  ) C )  <  x  <->  ( abs `  ( ( F `  z )  -  C ) )  <  x ) )
108104, 107bitrd 257 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
10996, 108imbi12d 322 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
110109ralbidva 2824 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A. z  e.  ( A  \  { B } ) ( z  e.  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  A. z  e.  ( A  \  { B } ) ( ( abs `  ( z  -  B ) )  <  y  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
111 elin 3617 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  <->  ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  z  e.  ( A  \  { B } ) ) )
112 ancom 452 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  z  e.  ( A  \  { B } ) )  <->  ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
113111, 112bitri 253 . . . . . . . . . . . 12  |-  ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  <->  ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
114113imbi1i 327 . . . . . . . . . . 11  |-  ( ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( ( z  e.  ( A  \  { B } )  /\  z  e.  ( B
( ball `  ( abs  o. 
-  ) ) y ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
115 impexp 448 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( z  e.  ( A  \  { B } )  ->  (
z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) ) )
116114, 115bitr2i 254 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  <-> 
( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
117116ralbii2 2817 . . . . . . . . 9  |-  ( A. z  e.  ( A  \  { B } ) ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  A. z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) ( F `  z
)  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
118 impexp 448 . . . . . . . . . . 11  |-  ( ( ( z  e.  A  /\  z  =/=  B
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( z  =/=  B  ->  (
( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
119 eldifsn 4097 . . . . . . . . . . . 12  |-  ( z  e.  ( A  \  { B } )  <->  ( z  e.  A  /\  z  =/=  B ) )
120119imbi1i 327 . . . . . . . . . . 11  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( (
z  e.  A  /\  z  =/=  B )  -> 
( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
121 impexp 448 . . . . . . . . . . . 12  |-  ( ( ( z  =/=  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <-> 
( z  =/=  B  ->  ( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
122121imbi2i 314 . . . . . . . . . . 11  |-  ( ( z  e.  A  -> 
( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( z  =/=  B  ->  (
( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
123118, 120, 1223bitr4i 281 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
124123ralbii2 2817 . . . . . . . . 9  |-  ( A. z  e.  ( A  \  { B } ) ( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x )  <->  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
125110, 117, 1243bitr3g 291 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
12682, 125bitrd 257 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
127126anassrs 654 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
128127rexbidva 2898 . . . . 5  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
129128ralbidva 2824 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
13071, 129bitrd 257 . . 3  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
131130pm5.32da 647 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. u  e.  ( TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) ) )
1325, 131bitrd 257 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    \ cdif 3401    i^i cin 3403    C_ wss 3404   {csn 3968   class class class wbr 4402   dom cdm 4834   "cima 4837    o. ccom 4838   Fun wfun 5576   -->wf 5578   ` cfv 5582  (class class class)co 6290   CCcc 9537   RR*cxr 9674    < clt 9675    - cmin 9860   RR+crp 11302   abscabs 13297   TopOpenctopn 15320   *Metcxmt 18955   ballcbl 18957  ℂfldccnfld 18970   lim CC climc 22817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-fz 11785  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-plusg 15203  df-mulr 15204  df-starv 15205  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-rest 15321  df-topn 15322  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cnp 20244  df-xms 21335  df-ms 21336  df-limc 22821
This theorem is referenced by:  dveflem  22931  dvferm1  22937  dvferm2  22939  lhop1  22966  ftc1lem6  22993  ulmdvlem3  23357  ftc1cnnc  32016  mullimc  37696  ellimcabssub0  37697  limcdm0  37698  mullimcf  37703  constlimc  37704  idlimc  37706  limcperiod  37708  limcrecl  37709  limcleqr  37725  neglimc  37728  addlimc  37729  0ellimcdiv  37730  limclner  37732  fperdvper  37790  ioodvbdlimc1lem2  37804  ioodvbdlimc1lem2OLD  37806  ioodvbdlimc2lem  37808  ioodvbdlimc2lemOLD  37809
  Copyright terms: Public domain W3C validator