MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc3 Structured version   Unicode version

Theorem ellimc3 22110
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
ellimc3.f  |-  ( ph  ->  F : A --> CC )
ellimc3.a  |-  ( ph  ->  A  C_  CC )
ellimc3.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
ellimc3  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z

Proof of Theorem ellimc3
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellimc3.f . . 3  |-  ( ph  ->  F : A --> CC )
2 ellimc3.a . . 3  |-  ( ph  ->  A  C_  CC )
3 ellimc3.b . . 3  |-  ( ph  ->  B  e.  CC )
4 eqid 2467 . . 3  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
51, 2, 3, 4ellimc2 22108 . 2  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  (
TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) ) )
6 cnxmet 21107 . . . . . . . . . 10  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
76a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
8 simplr 754 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  C  e.  CC )
9 simpr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
10 blcntr 20743 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  C  e.  CC  /\  x  e.  RR+ )  ->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
117, 8, 9, 10syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
12 rpxr 11228 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e. 
RR* )
1312adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  x  e.  RR* )
144cnfldtopn 21116 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
1514blopn 20830 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  C  e.  CC  /\  x  e.  RR* )  ->  ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld ) )
167, 8, 13, 15syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld ) )
17 eleq2 2540 . . . . . . . . . . 11  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( C  e.  u  <->  C  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
18 sseq2 3526 . . . . . . . . . . . . 13  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u  <->  ( F " ( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
1918anbi2d 703 . . . . . . . . . . . 12  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  u )  <->  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) ) ) )
2019rexbidv 2973 . . . . . . . . . . 11  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u )  <->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
2117, 20imbi12d 320 . . . . . . . . . 10  |-  ( u  =  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u ) )  <->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2221rspcv 3210 . . . . . . . . 9  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  e.  (
TopOpen ` fld )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2316, 22syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  ( C  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) ) )
2411, 23mpid 41 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
2514mopni2 20823 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  E. y  e.  RR+  ( B (
ball `  ( abs  o. 
-  ) ) y )  C_  v )
266, 25mp3an1 1311 . . . . . . . . . 10  |-  ( ( v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  E. y  e.  RR+  ( B (
ball `  ( abs  o. 
-  ) ) y )  C_  v )
27 ssrin 3723 . . . . . . . . . . . . 13  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) )  C_  (
v  i^i  ( A  \  { B } ) ) )
28 imass2 5372 . . . . . . . . . . . . 13  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) 
C_  ( v  i^i  ( A  \  { B } ) )  -> 
( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) )  C_  ( F " ( v  i^i  ( A  \  { B }
) ) ) )
29 sstr2 3511 . . . . . . . . . . . . 13  |-  ( ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( F " ( v  i^i  ( A  \  { B } ) ) )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  ( F " ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3027, 28, 293syl 20 . . . . . . . . . . . 12  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3130com12 31 . . . . . . . . . . 11  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  ( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) ) )
3231reximdv 2937 . . . . . . . . . 10  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( E. y  e.  RR+  ( B ( ball `  ( abs  o.  -  ) ) y )  C_  v  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3326, 32syl5com 30 . . . . . . . . 9  |-  ( ( v  e.  ( TopOpen ` fld )  /\  B  e.  v
)  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  ->  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3433impr 619 . . . . . . . 8  |-  ( ( v  e.  ( TopOpen ` fld )  /\  ( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )
3534rexlimiva 2951 . . . . . . 7  |-  ( E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )
3624, 35syl6 33 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( A. u  e.  ( TopOpen
` fld
) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3736ralrimdva 2882 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  ->  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
3814mopni2 20823 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  E. x  e.  RR+  ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u )
396, 38mp3an1 1311 . . . . . . . . 9  |-  ( ( u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  E. x  e.  RR+  ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u )
40 r19.29r 2998 . . . . . . . . . . 11  |-  ( ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  /\  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. x  e.  RR+  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  /\  E. y  e.  RR+  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
416a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
423ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  B  e.  CC )
43 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  y  e.  RR+ )
4443rpxrd 11258 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  y  e.  RR* )
4514blopn 20830 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  CC  /\  y  e.  RR* )  ->  ( B ( ball `  ( abs  o.  -  ) ) y )  e.  (
TopOpen ` fld ) )
4641, 42, 44, 45syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld ) )
47 blcntr 20743 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  e.  CC  /\  y  e.  RR+ )  ->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )
4841, 42, 43, 47syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )
49 eleq2 2540 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( B  e.  v  <->  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
50 ineq1 3693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( v  i^i  ( A  \  { B } ) )  =  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )
5150imaeq2d 5337 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( F " ( v  i^i  ( A  \  { B }
) ) )  =  ( F " (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) ) )
5251sseq1d 3531 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x )  <->  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
5349, 52anbi12d 710 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x ) )  <->  ( B  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) ) )
5453rspcev 3214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld )  /\  ( B  e.  ( B
( ball `  ( abs  o. 
-  ) ) y )  /\  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) )
5554expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( B ( ball `  ( abs  o.  -  ) ) y )  e.  ( TopOpen ` fld )  /\  B  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )  ->  ( ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
5646, 48, 55syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
5756rexlimdva 2955 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) ) ) )
58 sstr2 3511 . . . . . . . . . . . . . . . . 17  |-  ( ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  ( C
( ball `  ( abs  o. 
-  ) ) x )  ->  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( F " (
v  i^i  ( A  \  { B } ) ) )  C_  u
) )
5958com12 31 . . . . . . . . . . . . . . . 16  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( F " ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )
6059anim2d 565 . . . . . . . . . . . . . . 15  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) )  ->  ( B  e.  v  /\  ( F " ( v  i^i  ( A  \  { B } ) ) )  C_  u )
) )
6160reximdv 2937 . . . . . . . . . . . . . 14  |-  ( ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  ( C (
ball `  ( abs  o. 
-  ) ) x ) )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6257, 61syl9 71 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6362impd 431 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  (
( ( C (
ball `  ( abs  o. 
-  ) ) x )  C_  u  /\  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6463rexlimdva 2955 . . . . . . . . . . 11  |-  ( (
ph  /\  C  e.  CC )  ->  ( E. x  e.  RR+  (
( C ( ball `  ( abs  o.  -  ) ) x ) 
C_  u  /\  E. y  e.  RR+  ( F
" ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6540, 64syl5 32 . . . . . . . . . 10  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  /\  A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) )  ->  E. v  e.  ( TopOpen
` fld
) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
6665expd 436 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  ( E. x  e.  RR+  ( C ( ball `  ( abs  o.  -  ) ) x )  C_  u  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6739, 66syl5 32 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( u  e.  ( TopOpen ` fld )  /\  C  e.  u
)  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6867expdimp 437 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  ( TopOpen ` fld ) )  ->  ( C  e.  u  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
6968com23 78 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  ( TopOpen ` fld ) )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld )
( B  e.  v  /\  ( F "
( v  i^i  ( A  \  { B }
) ) )  C_  u ) ) ) )
7069ralrimdva 2882 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  ->  A. u  e.  ( TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
7137, 70impbid 191 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  <->  A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
721ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  F : A --> CC )
73 ffun 5733 . . . . . . . . . 10  |-  ( F : A --> CC  ->  Fun 
F )
7472, 73syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  Fun  F )
75 inss2 3719 . . . . . . . . . 10  |-  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  C_  ( A  \  { B }
)
76 difss 3631 . . . . . . . . . . 11  |-  ( A 
\  { B }
)  C_  A
77 fdm 5735 . . . . . . . . . . . 12  |-  ( F : A --> CC  ->  dom 
F  =  A )
7872, 77syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  ->  dom  F  =  A )
7976, 78syl5sseqr 3553 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A  \  { B } )  C_  dom  F )
8075, 79syl5ss 3515 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) )  C_  dom  F )
81 funimass4 5919 . . . . . . . . 9  |-  ( ( Fun  F  /\  (
( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) 
C_  dom  F )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
8274, 80, 81syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
836a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
84 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
y  e.  RR+ )
8584rpxrd 11258 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
y  e.  RR* )
863ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  B  e.  CC )
8776, 2syl5ss 3515 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  \  { B } )  C_  CC )
8887ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A  \  { B } )  C_  CC )
8988sselda 3504 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
z  e.  CC )
90 elbl3 20722 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  RR* )  /\  ( B  e.  CC  /\  z  e.  CC ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( z
( abs  o.  -  ) B )  <  y
) )
9183, 85, 86, 89, 90syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( z
( abs  o.  -  ) B )  <  y
) )
92 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
9392cnmetdval 21105 . . . . . . . . . . . . . 14  |-  ( ( z  e.  CC  /\  B  e.  CC )  ->  ( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
9489, 86, 93syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z ( abs 
o.  -  ) B
)  =  ( abs `  ( z  -  B
) ) )
9594breq1d 4457 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( z ( abs  o.  -  ) B )  <  y  <->  ( abs `  ( z  -  B ) )  <  y ) )
9691, 95bitrd 253 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  <->  ( abs `  ( z  -  B
) )  <  y
) )
97 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  x  e.  RR+ )
9897rpxrd 11258 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  x  e.  RR* )
99 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  ->  C  e.  CC )
100 eldifi 3626 . . . . . . . . . . . . . 14  |-  ( z  e.  ( A  \  { B } )  -> 
z  e.  A )
101 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( F : A --> CC  /\  z  e.  A )  ->  ( F `  z
)  e.  CC )
10272, 100, 101syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( F `  z
)  e.  CC )
103 elbl3 20722 . . . . . . . . . . . . 13  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  RR* )  /\  ( C  e.  CC  /\  ( F `
 z )  e.  CC ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( ( F `  z )
( abs  o.  -  ) C )  <  x
) )
10483, 98, 99, 102, 103syl22anc 1229 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( ( F `  z )
( abs  o.  -  ) C )  <  x
) )
10592cnmetdval 21105 . . . . . . . . . . . . . 14  |-  ( ( ( F `  z
)  e.  CC  /\  C  e.  CC )  ->  ( ( F `  z ) ( abs 
o.  -  ) C
)  =  ( abs `  ( ( F `  z )  -  C
) ) )
106102, 99, 105syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z ) ( abs 
o.  -  ) C
)  =  ( abs `  ( ( F `  z )  -  C
) ) )
107106breq1d 4457 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( ( F `
 z ) ( abs  o.  -  ) C )  <  x  <->  ( abs `  ( ( F `  z )  -  C ) )  <  x ) )
108104, 107bitrd 253 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
10996, 108imbi12d 320 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( x  e.  RR+  /\  y  e.  RR+ )
)  /\  z  e.  ( A  \  { B } ) )  -> 
( ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
110109ralbidva 2900 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A. z  e.  ( A  \  { B } ) ( z  e.  ( B (
ball `  ( abs  o. 
-  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  A. z  e.  ( A  \  { B } ) ( ( abs `  ( z  -  B ) )  <  y  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
111 elin 3687 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  <->  ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  z  e.  ( A  \  { B } ) ) )
112 ancom 450 . . . . . . . . . . . . 13  |-  ( ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  /\  z  e.  ( A  \  { B } ) )  <->  ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
113111, 112bitri 249 . . . . . . . . . . . 12  |-  ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  <->  ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) ) )
114113imbi1i 325 . . . . . . . . . . 11  |-  ( ( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( ( z  e.  ( A  \  { B } )  /\  z  e.  ( B
( ball `  ( abs  o. 
-  ) ) y ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
115 impexp 446 . . . . . . . . . . 11  |-  ( ( ( z  e.  ( A  \  { B } )  /\  z  e.  ( B ( ball `  ( abs  o.  -  ) ) y ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  ( z  e.  ( A  \  { B } )  ->  (
z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) ) )
116114, 115bitr2i 250 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )  <-> 
( z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) ) )
117116ralbii2 2893 . . . . . . . . 9  |-  ( A. z  e.  ( A  \  { B } ) ( z  e.  ( B ( ball `  ( abs  o.  -  ) ) y )  ->  ( F `  z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )  <->  A. z  e.  ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B } ) ) ( F `  z
)  e.  ( C ( ball `  ( abs  o.  -  ) ) x ) )
118 impexp 446 . . . . . . . . . . 11  |-  ( ( ( z  e.  A  /\  z  =/=  B
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( z  =/=  B  ->  (
( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
119 eldifsn 4152 . . . . . . . . . . . 12  |-  ( z  e.  ( A  \  { B } )  <->  ( z  e.  A  /\  z  =/=  B ) )
120119imbi1i 325 . . . . . . . . . . 11  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( (
z  e.  A  /\  z  =/=  B )  -> 
( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
121 impexp 446 . . . . . . . . . . . 12  |-  ( ( ( z  =/=  B  /\  ( abs `  (
z  -  B ) )  <  y )  ->  ( abs `  (
( F `  z
)  -  C ) )  <  x )  <-> 
( z  =/=  B  ->  ( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
122121imbi2i 312 . . . . . . . . . . 11  |-  ( ( z  e.  A  -> 
( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( z  =/=  B  ->  (
( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
123118, 120, 1223bitr4i 277 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  { B }
)  ->  ( ( abs `  ( z  -  B ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )  <->  ( z  e.  A  ->  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
124123ralbii2 2893 . . . . . . . . 9  |-  ( A. z  e.  ( A  \  { B } ) ( ( abs `  (
z  -  B ) )  <  y  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x )  <->  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) )
125110, 117, 1243bitr3g 287 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( A. z  e.  ( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) ( F `
 z )  e.  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
12682, 125bitrd 253 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
x  e.  RR+  /\  y  e.  RR+ ) )  -> 
( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
127126anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  /\  y  e.  RR+ )  ->  ( ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) )
128127rexbidva 2970 . . . . 5  |-  ( ( ( ph  /\  C  e.  CC )  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  ( F " ( ( B ( ball `  ( abs  o.  -  ) ) y )  i^i  ( A  \  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
129128ralbidva 2900 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. x  e.  RR+  E. y  e.  RR+  ( F "
( ( B (
ball `  ( abs  o. 
-  ) ) y )  i^i  ( A 
\  { B }
) ) )  C_  ( C ( ball `  ( abs  o.  -  ) ) x )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) )
13071, 129bitrd 253 . . 3  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  ( TopOpen ` fld )
( C  e.  u  ->  E. v  e.  (
TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) )  <->  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/=  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) )
131130pm5.32da 641 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  A. u  e.  ( TopOpen ` fld ) ( C  e.  u  ->  E. v  e.  ( TopOpen ` fld ) ( B  e.  v  /\  ( F
" ( v  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )  <->  ( C  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( ( z  =/= 
B  /\  ( abs `  ( z  -  B
) )  <  y
)  ->  ( abs `  ( ( F `  z )  -  C
) )  <  x
) ) ) )
1325, 131bitrd 253 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z  =/=  B  /\  ( abs `  ( z  -  B ) )  <  y )  -> 
( abs `  (
( F `  z
)  -  C ) )  <  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473    i^i cin 3475    C_ wss 3476   {csn 4027   class class class wbr 4447   dom cdm 4999   "cima 5002    o. ccom 5003   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6285   CCcc 9491   RR*cxr 9628    < clt 9629    - cmin 9806   RR+crp 11221   abscabs 13033   TopOpenctopn 14680   *Metcxmt 18214   ballcbl 18216  ℂfldccnfld 18231   lim CC climc 22093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-pm 7424  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fi 7872  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10978  df-uz 11084  df-q 11184  df-rp 11222  df-xneg 11319  df-xadd 11320  df-xmul 11321  df-fz 11674  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-plusg 14571  df-mulr 14572  df-starv 14573  df-tset 14577  df-ple 14578  df-ds 14580  df-unif 14581  df-rest 14681  df-topn 14682  df-topgen 14702  df-psmet 18222  df-xmet 18223  df-met 18224  df-bl 18225  df-mopn 18226  df-cnfld 18232  df-top 19206  df-bases 19208  df-topon 19209  df-topsp 19210  df-cnp 19535  df-xms 20650  df-ms 20651  df-limc 22097
This theorem is referenced by:  dveflem  22207  dvferm1  22213  dvferm2  22215  lhop1  22242  ftc1lem6  22269  ulmdvlem3  22623  ftc1cnnc  29942  mullimc  31385  ellimcabssub0  31386  limcdm0  31387  mullimcf  31392  constlimc  31393  idlimc  31395  limcperiod  31397  limcrecl  31398  limcleqr  31413  neglimc  31416  addlimc  31417  0ellimcdiv  31418  limclner  31420  fperdvper  31475  ioodvbdlimc1lem2  31489  ioodvbdlimc2lem  31491
  Copyright terms: Public domain W3C validator