MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellimc2 Structured version   Unicode version

Theorem ellimc2 21194
Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limccl.f  |-  ( ph  ->  F : A --> CC )
limccl.a  |-  ( ph  ->  A  C_  CC )
limccl.b  |-  ( ph  ->  B  e.  CC )
ellimc2.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
ellimc2  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Distinct variable groups:    w, u, A    u, B, w    ph, u, w    u, C, w    u, F, w    u, K, w

Proof of Theorem ellimc2
Dummy variables  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 21192 . . . 4  |-  ( F lim
CC  B )  C_  CC
21sseli 3340 . . 3  |-  ( C  e.  ( F lim CC  B )  ->  C  e.  CC )
32pm4.71ri 626 . 2  |-  ( C  e.  ( F lim CC  B )  <->  ( C  e.  CC  /\  C  e.  ( F lim CC  B
) ) )
4 eqid 2433 . . . . . 6  |-  ( Kt  ( A  u.  { B } ) )  =  ( Kt  ( A  u.  { B } ) )
5 ellimc2.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
6 eqid 2433 . . . . . 6  |-  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
7 limccl.f . . . . . 6  |-  ( ph  ->  F : A --> CC )
8 limccl.a . . . . . 6  |-  ( ph  ->  A  C_  CC )
9 limccl.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
104, 5, 6, 7, 8, 9ellimc 21190 . . . . 5  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
1110adantr 462 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
) ) )
125cnfldtopon 20204 . . . . . . 7  |-  K  e.  (TopOn `  CC )
139snssd 4006 . . . . . . . 8  |-  ( ph  ->  { B }  C_  CC )
148, 13unssd 3520 . . . . . . 7  |-  ( ph  ->  ( A  u.  { B } )  C_  CC )
15 resttopon 18607 . . . . . . 7  |-  ( ( K  e.  (TopOn `  CC )  /\  ( A  u.  { B } )  C_  CC )  ->  ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1612, 14, 15sylancr 656 . . . . . 6  |-  ( ph  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1716adantr 462 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) ) )
1812a1i 11 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  K  e.  (TopOn `  CC )
)
19 ssun2 3508 . . . . . . 7  |-  { B }  C_  ( A  u.  { B } )
20 snssg 3995 . . . . . . . 8  |-  ( B  e.  CC  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
219, 20syl 16 . . . . . . 7  |-  ( ph  ->  ( B  e.  ( A  u.  { B } )  <->  { B }  C_  ( A  u.  { B } ) ) )
2219, 21mpbiri 233 . . . . . 6  |-  ( ph  ->  B  e.  ( A  u.  { B }
) )
2322adantr 462 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  B  e.  ( A  u.  { B } ) )
24 elun 3485 . . . . . . . 8  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  e.  { B } ) )
25 elsn 3879 . . . . . . . . 9  |-  ( z  e.  { B }  <->  z  =  B )
2625orbi2i 516 . . . . . . . 8  |-  ( ( z  e.  A  \/  z  e.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
2724, 26bitri 249 . . . . . . 7  |-  ( z  e.  ( A  u.  { B } )  <->  ( z  e.  A  \/  z  =  B ) )
28 simpllr 751 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  z  =  B )  ->  C  e.  CC )
29 pm5.61 705 . . . . . . . . . 10  |-  ( ( ( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B )  <->  ( z  e.  A  /\  -.  z  =  B ) )
307ffvelrnda 5831 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
3130ad2ant2r 739 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  /\  -.  z  =  B
) )  ->  ( F `  z )  e.  CC )
3229, 31sylan2b 472 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
( z  e.  A  \/  z  =  B
)  /\  -.  z  =  B ) )  -> 
( F `  z
)  e.  CC )
3332anassrs 641 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( z  e.  A  \/  z  =  B
) )  /\  -.  z  =  B )  ->  ( F `  z
)  e.  CC )
3428, 33ifclda 3809 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
z  e.  A  \/  z  =  B )
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3527, 34sylan2b 472 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  z  e.  ( A  u.  { B } ) )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  CC )
3635, 6fmptd 5855 . . . . 5  |-  ( (
ph  /\  C  e.  CC )  ->  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )
37 iscnp 18683 . . . . . 6  |-  ( ( ( Kt  ( A  u.  { B } ) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC  /\  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) ) )
3837baibd 893 . . . . 5  |-  ( ( ( ( Kt  ( A  u.  { B }
) )  e.  (TopOn `  ( A  u.  { B } ) )  /\  K  e.  (TopOn `  CC )  /\  B  e.  ( A  u.  { B } ) )  /\  ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( A  u.  { B } ) --> CC )  ->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
3917, 18, 23, 36, 38syl31anc 1214 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  e.  ( ( ( Kt  ( A  u.  { B } ) )  CnP 
K ) `  B
)  <->  A. u  e.  K  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) ) ) )
40 iftrue 3785 . . . . . . . . . . 11  |-  ( z  =  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  C )
4140, 6fvmptg 5760 . . . . . . . . . 10  |-  ( ( B  e.  ( A  u.  { B }
)  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4222, 41sylan 468 . . . . . . . . 9  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  =  C )
4342eleq1d 2499 . . . . . . . 8  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  <->  C  e.  u
) )
4443imbi1d 317 . . . . . . 7  |-  ( (
ph  /\  C  e.  CC )  ->  ( ( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
4544adantr 462 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) ) )
465cnfldtop 20205 . . . . . . . . . . 11  |-  K  e. 
Top
47 cnex 9351 . . . . . . . . . . . . . 14  |-  CC  e.  _V
4847ssex 4424 . . . . . . . . . . . . 13  |-  ( ( A  u.  { B } )  C_  CC  ->  ( A  u.  { B } )  e.  _V )
4914, 48syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  u.  { B } )  e.  _V )
5049ad2antrr 718 . . . . . . . . . . 11  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( A  u.  { B } )  e.  _V )
51 restval 14348 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  ( A  u.  { B } )  e.  _V )  ->  ( Kt  ( A  u.  { B }
) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5246, 50, 51sylancr 656 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( Kt  ( A  u.  { B } ) )  =  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) )
5352rexeqdv 2914 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
) )
54 vex 2965 . . . . . . . . . . . 12  |-  w  e. 
_V
5554inex1 4421 . . . . . . . . . . 11  |-  ( w  i^i  ( A  u.  { B } ) )  e.  _V
5655rgenw 2773 . . . . . . . . . 10  |-  A. w  e.  K  ( w  i^i  ( A  u.  { B } ) )  e. 
_V
57 eqid 2433 . . . . . . . . . . 11  |-  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )  =  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) )
58 eleq2 2494 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( B  e.  v  <-> 
B  e.  ( w  i^i  ( A  u.  { B } ) ) ) )
59 imaeq2 5153 . . . . . . . . . . . . 13  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  =  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) )
6059sseq1d 3371 . . . . . . . . . . . 12  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u  <->  ( (
z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) )
6158, 60anbi12d 703 . . . . . . . . . . 11  |-  ( v  =  ( w  i^i  ( A  u.  { B } ) )  -> 
( ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6257, 61rexrnmpt 5841 . . . . . . . . . 10  |-  ( A. w  e.  K  (
w  i^i  ( A  u.  { B } ) )  e.  _V  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " (
w  i^i  ( A  u.  { B } ) ) )  C_  u
) ) )
6356, 62mp1i 12 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ran  ( w  e.  K  |->  ( w  i^i  ( A  u.  { B } ) ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u ) ) )
6422ad3antrrr 722 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  B  e.  ( A  u.  { B } ) )
65 elin 3527 . . . . . . . . . . . . 13  |-  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  ( B  e.  w  /\  B  e.  ( A  u.  { B } ) ) )
6665rbaib 891 . . . . . . . . . . . 12  |-  ( B  e.  ( A  u.  { B } )  -> 
( B  e.  ( w  i^i  ( A  u.  { B }
) )  <->  B  e.  w ) )
6764, 66syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  <->  B  e.  w ) )
68 simpllr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  CC )
69 fvex 5689 . . . . . . . . . . . . . . . . 17  |-  ( F `
 z )  e. 
_V
70 ifexg 3847 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  ( F `  z )  e.  _V )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7168, 69, 70sylancl 655 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
7271ralrimivw 2790 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V )
73 eqid 2433 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )
7473fnmpt 5525 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  _V  ->  ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) ) )
7573fmpt 5852 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) : ( w  i^i  ( A  u.  { B }
) ) --> u )
76 df-f 5410 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) ) : ( w  i^i  ( A  u.  { B } ) ) --> u  <-> 
( ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  Fn  (
w  i^i  ( A  u.  { B } ) )  /\  ran  (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  C_  u ) )
7775, 76bitri 249 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( (
z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  /\  ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u ) )
7877baib 889 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( w  i^i  ( A  u.  { B } ) ) 
|->  if ( z  =  B ,  C , 
( F `  z
) ) )  Fn  ( w  i^i  ( A  u.  { B } ) )  -> 
( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
7972, 74, 783syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
80 simplrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  C  e.  u )
81 inss2 3559 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  { B }
)  C_  { B }
8281sseli 3340 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( w  i^i 
{ B } )  ->  z  e.  { B } )
8325, 40sylbi 195 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  { B }  ->  if ( z  =  B ,  C , 
( F `  z
) )  =  C )
8483eleq1d 2499 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { B }  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8582, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( w  i^i 
{ B } )  ->  ( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  C  e.  u
) )
8680, 85syl5ibrcom 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
z  e.  ( w  i^i  { B }
)  ->  if (
z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
8786ralrimiv 2788 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
88 undif1 3742 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  \  { B } )  u.  { B } )  =  ( A  u.  { B } )
8988ineq2i 3537 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( w  i^i  ( A  u.  { B } ) )
90 indi 3584 . . . . . . . . . . . . . . . . . . 19  |-  ( w  i^i  ( ( A 
\  { B }
)  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) )
9189, 90eqtr3i 2455 . . . . . . . . . . . . . . . . . 18  |-  ( w  i^i  ( A  u.  { B } ) )  =  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i 
{ B } ) )
9291raleqi 2911 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( ( w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u )
93 ralunb 3525 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  ( (
w  i^i  ( A  \  { B } ) )  u.  ( w  i^i  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9492, 93bitri 249 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  /\  A. z  e.  ( w  i^i  { B }
) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9594rbaib 891 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  ( w  i^i  { B } ) if ( z  =  B ,  C , 
( F `  z
) )  e.  u  ->  ( A. z  e.  ( w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9687, 95syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( A. z  e.  (
w  i^i  ( A  u.  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A 
\  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
9779, 96bitr3d 255 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u ) )
98 inss2 3559 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  ( A  \  { B } )
9998sseli 3340 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
z  e.  ( A 
\  { B }
) )
100 eldifsni 3989 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( A  \  { B } )  -> 
z  =/=  B )
101 ifnefalse 3789 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  B  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
102100, 101syl 16 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( A  \  { B } )  ->  if ( z  =  B ,  C ,  ( F `  z ) )  =  ( F `
 z ) )
103102eleq1d 2499 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( A  \  { B } )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
10499, 103syl 16 . . . . . . . . . . . . . 14  |-  ( z  e.  ( w  i^i  ( A  \  { B } ) )  -> 
( if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  ( F `  z )  e.  u
) )
105104ralbiia 2737 . . . . . . . . . . . . 13  |-  ( A. z  e.  ( w  i^i  ( A  \  { B } ) ) if ( z  =  B ,  C ,  ( F `  z ) )  e.  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u )
10697, 105syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ( ran  ( z  e.  ( w  i^i  ( A  u.  { B }
) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
107 df-ima 4840 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( ( z  e.  ( A  u.  { B }
)  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )
108 inss2 3559 . . . . . . . . . . . . . . . 16  |-  ( w  i^i  ( A  u.  { B } ) ) 
C_  ( A  u.  { B } )
109 resmpt 5144 . . . . . . . . . . . . . . . 16  |-  ( ( w  i^i  ( A  u.  { B }
) )  C_  ( A  u.  { B } )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
110108, 109mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
111110rneqd 5054 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  ran  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  |`  ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
112107, 111syl5eq 2477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) )  =  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) )
113112sseq1d 3371 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ran  ( z  e.  ( w  i^i  ( A  u.  { B } ) )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )  C_  u
) )
1147ad3antrrr 722 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  F : A --> CC )
115 ffun 5549 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  Fun 
F )
116114, 115syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  Fun  F )
117 difss 3471 . . . . . . . . . . . . . . 15  |-  ( A 
\  { B }
)  C_  A
11898, 117sstri 3353 . . . . . . . . . . . . . 14  |-  ( w  i^i  ( A  \  { B } ) ) 
C_  A
119 fdm 5551 . . . . . . . . . . . . . . 15  |-  ( F : A --> CC  ->  dom 
F  =  A )
120114, 119syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  dom  F  =  A )
121118, 120syl5sseqr 3393 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )
122 funimass4 5730 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
w  i^i  ( A  \  { B } ) )  C_  dom  F )  ->  ( ( F
" ( w  i^i  ( A  \  { B } ) ) ) 
C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B }
) ) ( F `
 z )  e.  u ) )
123116, 121, 122syl2anc 654 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u  <->  A. z  e.  ( w  i^i  ( A  \  { B } ) ) ( F `  z
)  e.  u ) )
124106, 113, 1233bitr4d 285 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u  <->  ( F " ( w  i^i  ( A  \  { B }
) ) )  C_  u ) )
12567, 124anbi12d 703 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  ( u  e.  K  /\  C  e.  u
) )  /\  w  e.  K )  ->  (
( B  e.  ( w  i^i  ( A  u.  { B }
) )  /\  (
( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
126125rexbidva 2722 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. w  e.  K  ( B  e.  ( w  i^i  ( A  u.  { B } ) )  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" ( w  i^i  ( A  u.  { B } ) ) ) 
C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
12753, 63, 1263bitrd 279 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  CC )  /\  (
u  e.  K  /\  C  e.  u )
)  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
128127anassrs 641 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K
)  /\  C  e.  u )  ->  ( E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u )  <->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) )
129128pm5.74da 680 . . . . . 6  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( C  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
13045, 129bitrd 253 . . . . 5  |-  ( ( ( ph  /\  C  e.  CC )  /\  u  e.  K )  ->  (
( ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `  B
)  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) )
" v )  C_  u ) )  <->  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
131130ralbidva 2721 . . . 4  |-  ( (
ph  /\  C  e.  CC )  ->  ( A. u  e.  K  (
( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) `
 B )  e.  u  ->  E. v  e.  ( Kt  ( A  u.  { B } ) ) ( B  e.  v  /\  ( ( z  e.  ( A  u.  { B } )  |->  if ( z  =  B ,  C ,  ( F `  z ) ) ) " v
)  C_  u )
)  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) )
13211, 39, 1313bitrd 279 . . 3  |-  ( (
ph  /\  C  e.  CC )  ->  ( C  e.  ( F lim CC  B )  <->  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) )
133132pm5.32da 634 . 2  |-  ( ph  ->  ( ( C  e.  CC  /\  C  e.  ( F lim CC  B
) )  <->  ( C  e.  CC  /\  A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " ( w  i^i  ( A  \  { B } ) ) ) 
C_  u ) ) ) ) )
1343, 133syl5bb 257 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. u  e.  K  ( C  e.  u  ->  E. w  e.  K  ( B  e.  w  /\  ( F " (
w  i^i  ( A  \  { B } ) ) )  C_  u
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706   _Vcvv 2962    \ cdif 3313    u. cun 3314    i^i cin 3315    C_ wss 3316   ifcif 3779   {csn 3865    e. cmpt 4338   dom cdm 4827   ran crn 4828    |` cres 4829   "cima 4830   Fun wfun 5400    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   ↾t crest 14342   TopOpenctopn 14343  ℂfldccnfld 17662   Topctop 18340  TopOnctopon 18341    CnP ccnp 18671   lim CC climc 21179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fi 7649  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-fz 11425  df-seq 11791  df-exp 11850  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-plusg 14234  df-mulr 14235  df-starv 14236  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-rest 14344  df-topn 14345  df-topgen 14365  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cnp 18674  df-xms 19737  df-ms 19738  df-limc 21183
This theorem is referenced by:  limcnlp  21195  ellimc3  21196  limcflf  21198  limcresi  21202  limciun  21211  lhop1lem  21327
  Copyright terms: Public domain W3C validator