MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixx1 Structured version   Unicode version

Theorem elixx1 11541
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
elixx1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Distinct variable groups:    x, y,
z, A    x, C, y, z    x, B, y, z    x, R, y, z    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem elixx1
StepHypRef Expression
1 ixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
21ixxval 11540 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  { z  e.  RR*  |  ( A R z  /\  z S B ) } )
32eleq2d 2524 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  C  e.  { z  e.  RR*  |  ( A R z  /\  z S B ) } ) )
4 breq2 4443 . . . . 5  |-  ( z  =  C  ->  ( A R z  <->  A R C ) )
5 breq1 4442 . . . . 5  |-  ( z  =  C  ->  (
z S B  <->  C S B ) )
64, 5anbi12d 708 . . . 4  |-  ( z  =  C  ->  (
( A R z  /\  z S B )  <->  ( A R C  /\  C S B ) ) )
76elrab 3254 . . 3  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
8 3anass 975 . . 3  |-  ( ( C  e.  RR*  /\  A R C  /\  C S B )  <->  ( C  e.  RR*  /\  ( A R C  /\  C S B ) ) )
97, 8bitr4i 252 . 2  |-  ( C  e.  { z  e. 
RR*  |  ( A R z  /\  z S B ) }  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) )
103, 9syl6bb 261 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B )  <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   {crab 2808   class class class wbr 4439  (class class class)co 6270    |-> cmpt2 6272   RR*cxr 9616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-xr 9621
This theorem is referenced by:  elixx3g  11545  ixxssixx  11546  ixxdisj  11547  ixxun  11548  ixxss1  11550  ixxss2  11551  ixxss12  11552  ixxub  11553  ixxlb  11554  elioo1  11572  elioc1  11574  elico1  11575  elicc1  11576
  Copyright terms: Public domain W3C validator