MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp2 Structured version   Unicode version

Theorem elixp2 7470
Description: Membership in an infinite Cartesian product. See df-ixp 7467 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem elixp2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5667 . . . . 5  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 fveq1 5863 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
32eleq1d 2536 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
43ralbidv 2903 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  A  ( f `  x
)  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4anbi12d 710 . . . 4  |-  ( f  =  F  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  <-> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
6 dfixp 7468 . . . 4  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
75, 6elab2g 3252 . . 3  |-  ( F  e.  _V  ->  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) ) )
87pm5.32i 637 . 2  |-  ( ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
9 elex 3122 . . 3  |-  ( F  e.  X_ x  e.  A  B  ->  F  e.  _V )
109pm4.71ri 633 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )
)
11 3anass 977 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
128, 10, 113bitr4i 277 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    Fn wfn 5581   ` cfv 5586   X_cixp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594  df-ixp 7467
This theorem is referenced by:  fvixp  7471  ixpfn  7472  elixp  7473  ixpf  7488  resixp  7501  undifixp  7502  mptelixpg  7503  prdsbasprj  14723  xpsfrnel  14814  isssc  15046  isfuncd  15088  funcres2b  15120  dprdw  16834  dprdwOLD  16840  kelac1  30613
  Copyright terms: Public domain W3C validator