MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Unicode version

Theorem elixp 7028
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1  |-  F  e. 
_V
Assertion
Ref Expression
elixp  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 7025 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 elixp.1 . . 3  |-  F  e. 
_V
3 3anass 940 . . 3  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
42, 3mpbiran 885 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4bitri 241 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721   A.wral 2666   _Vcvv 2916    Fn wfn 5408   ` cfv 5413   X_cixp 7022
This theorem is referenced by:  elixpconst  7029  ixpin  7046  ixpiin  7047  resixpfo  7059  elixpsn  7060  boxriin  7063  boxcutc  7064  ixpfi2  7363  ixpiunwdom  7515  dfac9  7972  ac9  8319  ac9s  8329  konigthlem  8399  xpscf  13746  cofucl  14040  yonedalem3  14332  psrbaglefi  16392  ptpjpre1  17556  ptpjcn  17596  ptpjopn  17597  ptclsg  17600  dfac14  17603  pthaus  17623  xkopt  17640  ptcmplem2  18037  ptcmplem3  18038  ptcmplem4  18039  prdsbl  18474  prdsxmslem2  18512  ptpcon  24873  inixp  26320  prdstotbnd  26393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-ixp 7023
  Copyright terms: Public domain W3C validator