MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp Structured version   Unicode version

Theorem elixp 7266
Description: Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
elixp.1  |-  F  e. 
_V
Assertion
Ref Expression
elixp  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem elixp
StepHypRef Expression
1 elixp2 7263 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
2 elixp.1 . . 3  |-  F  e. 
_V
3 3anass 964 . . 3  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
42, 3mpbiran 904 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4bitri 249 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 960    e. wcel 1761   A.wral 2713   _Vcvv 2970    Fn wfn 5410   ` cfv 5415   X_cixp 7259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423  df-ixp 7260
This theorem is referenced by:  elixpconst  7267  ixpin  7284  ixpiin  7285  resixpfo  7297  elixpsn  7298  boxriin  7301  boxcutc  7302  ixpfi2  7605  ixpiunwdom  7802  dfac9  8301  ac9  8648  ac9s  8658  konigthlem  8728  xpscf  14500  cofucl  14794  yonedalem3  15086  psrbaglefi  17419  psrbaglefiOLD  17420  ptpjpre1  19103  ptpjcn  19143  ptpjopn  19144  ptclsg  19147  dfac14  19150  pthaus  19170  xkopt  19187  ptcmplem2  19584  ptcmplem3  19585  ptcmplem4  19586  prdsbl  20025  prdsxmslem2  20063  eulerpartlemb  26681  ptpcon  27052  finixpnum  28339  ptrest  28350  inixp  28547  prdstotbnd  28618
  Copyright terms: Public domain W3C validator