MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrv Structured version   Unicode version

Theorem elirrv 8041
Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 8046 and efrirr 4869, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
elirrv  |-  -.  x  e.  x

Proof of Theorem elirrv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2529 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x } 
<->  x  e.  { x } ) )
2 ssnid 4061 . . . 4  |-  x  e. 
{ x }
31, 2spei 2013 . . 3  |-  E. y 
y  e.  { x }
4 snex 4697 . . . 4  |-  { x }  e.  _V
54zfregcl 8038 . . 3  |-  ( E. y  y  e.  {
x }  ->  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x } )
63, 5ax-mp 5 . 2  |-  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x }
7 elsn 4046 . . . . . . 7  |-  ( y  e.  { x }  <->  y  =  x )
8 ax-9 1823 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  x  ->  x  e.  y )
)
98equcoms 1796 . . . . . . . 8  |-  ( y  =  x  ->  (
x  e.  x  ->  x  e.  y )
)
109com12 31 . . . . . . 7  |-  ( x  e.  x  ->  (
y  =  x  ->  x  e.  y )
)
117, 10syl5bi 217 . . . . . 6  |-  ( x  e.  x  ->  (
y  e.  { x }  ->  x  e.  y ) )
12 eleq1 2529 . . . . . . . . 9  |-  ( z  =  x  ->  (
z  e.  { x } 
<->  x  e.  { x } ) )
1312notbid 294 . . . . . . . 8  |-  ( z  =  x  ->  ( -.  z  e.  { x } 
<->  -.  x  e.  {
x } ) )
1413rspccv 3207 . . . . . . 7  |-  ( A. z  e.  y  -.  z  e.  { x }  ->  ( x  e.  y  ->  -.  x  e.  { x } ) )
152, 14mt2i 118 . . . . . 6  |-  ( A. z  e.  y  -.  z  e.  { x }  ->  -.  x  e.  y )
1611, 15nsyli 141 . . . . 5  |-  ( x  e.  x  ->  ( A. z  e.  y  -.  z  e.  { x }  ->  -.  y  e.  { x } ) )
1716con2d 115 . . . 4  |-  ( x  e.  x  ->  (
y  e.  { x }  ->  -.  A. z  e.  y  -.  z  e.  { x } ) )
1817ralrimiv 2869 . . 3  |-  ( x  e.  x  ->  A. y  e.  { x }  -.  A. z  e.  y  -.  z  e.  { x } )
19 ralnex 2903 . . 3  |-  ( A. y  e.  { x }  -.  A. z  e.  y  -.  z  e. 
{ x }  <->  -.  E. y  e.  { x } A. z  e.  y  -.  z  e.  { x } )
2018, 19sylib 196 . 2  |-  ( x  e.  x  ->  -.  E. y  e.  { x } A. z  e.  y  -.  z  e.  {
x } )
216, 20mt2 179 1  |-  -.  x  e.  x
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1613    e. wcel 1819   A.wral 2807   E.wrex 2808   {csn 4032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-reg 8036
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3474  df-un 3476  df-nul 3794  df-sn 4033  df-pr 4035
This theorem is referenced by:  elirr  8042  ruv  8044  dfac2  8528  nd1  8979  nd2  8980  nd3  8981  axunnd  8988  axregndlem1  8996  axregndlem2  8997  axregnd  8998  axregndOLD  8999  elpotr  29430  exnel  29452  distel  29453
  Copyright terms: Public domain W3C validator