MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioomnf Structured version   Unicode version

Theorem elioomnf 11644
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioomnf  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\  B  < 
A ) ) )

Proof of Theorem elioomnf
StepHypRef Expression
1 mnfxr 11348 . . 3  |- -oo  e.  RR*
2 elioo2 11595 . . 3  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\ -oo  <  B  /\  B  <  A
) ) )
31, 2mpan 670 . 2  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\ -oo  <  B  /\  B  <  A
) ) )
4 an32 798 . . 3  |-  ( ( ( B  e.  RR  /\ -oo  <  B )  /\  B  <  A )  <->  ( ( B  e.  RR  /\  B  <  A )  /\ -oo  <  B ) )
5 df-3an 975 . . 3  |-  ( ( B  e.  RR  /\ -oo 
<  B  /\  B  < 
A )  <->  ( ( B  e.  RR  /\ -oo  <  B )  /\  B  <  A ) )
6 mnflt 11358 . . . . 5  |-  ( B  e.  RR  -> -oo  <  B )
76adantr 465 . . . 4  |-  ( ( B  e.  RR  /\  B  <  A )  -> -oo  <  B )
87pm4.71i 632 . . 3  |-  ( ( B  e.  RR  /\  B  <  A )  <->  ( ( B  e.  RR  /\  B  <  A )  /\ -oo  <  B ) )
94, 5, 83bitr4i 277 . 2  |-  ( ( B  e.  RR  /\ -oo 
<  B  /\  B  < 
A )  <->  ( B  e.  RR  /\  B  < 
A ) )
103, 9syl6bb 261 1  |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\  B  < 
A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1819   class class class wbr 4456  (class class class)co 6296   RRcr 9508   -oocmnf 9643   RR*cxr 9644    < clt 9645   (,)cioo 11554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-pre-lttri 9583  ax-pre-lttrn 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-ioo 11558
This theorem is referenced by:  bndth  21583  mbfmulc2lem  22179  mbfposr  22184  ismbf3d  22186  mbfi1fseqlem4  22250  itg2monolem1  22282  dvne0  22537  mbfposadd  30224  itg2addnclem2  30229  iblabsnclem  30240  ftc1anclem1  30252  ftc1anclem6  30257  rfcnpre2  31567
  Copyright terms: Public domain W3C validator