Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioo3g Structured version   Unicode version

Theorem elioo3g 11559
 Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show and . (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioo3g

Proof of Theorem elioo3g
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 11534 . 2
21elixx3g 11543 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   w3a 973   wcel 1767   class class class wbr 4447  (class class class)co 6285  cxr 9628   clt 9629  cioo 11530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-xr 9633  df-ioo 11534 This theorem is referenced by:  elioore  11560  lbioo  11561  ubioo  11562  elioo4g  11586  qdensere  21104  lptioo2  31400  lptioo1  31401  icccncfext  31453  cncfiooicclem1  31459  iblcncfioo  31523  fourierdlem12  31646  fourierdlem74  31708  fourierdlem75  31709  fourierdlem93  31727  fourierdlem103  31737
 Copyright terms: Public domain W3C validator