MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc2 Structured version   Unicode version

Theorem elioc2 11612
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 9656 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
2 elioc1 11596 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  < 
C  /\  C  <_  B ) ) )
31, 2sylan2 474 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  < 
C  /\  C  <_  B ) ) )
4 mnfxr 11348 . . . . . . . 8  |- -oo  e.  RR*
54a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  e.  RR* )
6 simpll 753 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  A  e.  RR* )
7 simpr1 1002 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  e.  RR* )
8 mnfle 11367 . . . . . . . 8  |-  ( A  e.  RR*  -> -oo  <_  A )
98ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  <_  A )
10 simpr2 1003 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  A  <  C )
115, 6, 7, 9, 10xrlelttrd 11388 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> -oo  <  C )
121ad2antlr 726 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  B  e.  RR* )
13 pnfxr 11346 . . . . . . . 8  |- +oo  e.  RR*
1413a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  -> +oo  e.  RR* )
15 simpr3 1004 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  <_  B )
16 ltpnf 11356 . . . . . . . 8  |-  ( B  e.  RR  ->  B  < +oo )
1716ad2antlr 726 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  B  < +oo )
187, 12, 14, 15, 17xrlelttrd 11388 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  < +oo )
19 xrrebnd 11394 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
207, 19syl 16 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2111, 18, 20mpbir2and 922 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  C  e.  RR )
2221, 10, 153jca 1176 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( C  e. 
RR*  /\  A  <  C  /\  C  <_  B
) )  ->  ( C  e.  RR  /\  A  <  C  /\  C  <_  B ) )
2322ex 434 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( C  e.  RR*  /\  A  <  C  /\  C  <_  B )  -> 
( C  e.  RR  /\  A  <  C  /\  C  <_  B ) ) )
24 rexr 9656 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
25243anim1i 1182 . . 3  |-  ( ( C  e.  RR  /\  A  <  C  /\  C  <_  B )  ->  ( C  e.  RR*  /\  A  <  C  /\  C  <_  B ) )
2623, 25impbid1 203 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  (
( C  e.  RR*  /\  A  <  C  /\  C  <_  B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
273, 26bitrd 253 1  |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR  /\  A  < 
C  /\  C  <_  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1819   class class class wbr 4456  (class class class)co 6296   RRcr 9508   +oocpnf 9642   -oocmnf 9643   RR*cxr 9644    < clt 9645    <_ cle 9646   (,]cioc 11555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-pre-lttri 9583  ax-pre-lttrn 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-po 4809  df-so 4810  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-ioc 11559
This theorem is referenced by:  iocssre  11629  ef01bndlem  13931  sin01bnd  13932  cos01bnd  13933  cos1bnd  13934  sinltx  13936  sin01gt0  13937  cos01gt0  13938  sin02gt0  13939  sincos1sgn  13940  sincos2sgn  13941  icoopnst  21565  iocopnst  21566  ismbf3d  22187  aaliou3lem2  22865  aaliou3lem3  22866  pilem2  22973  sinhalfpilem  22982  sincosq1lem  23016  coseq0negpitopi  23022  tangtx  23024  sincos4thpi  23032  efif1olem1  23055  efif1olem2  23056  efif1o  23059  efifo  23060  ellogrn  23073  logimclad  23086  ellogdm  23146  logdmnrp  23148  dvloglem  23155  dvlog2lem  23159  asinneg  23343  atans2  23388  ressatans  23391  abvcxp  23926  ostth2  23948  xrge0iifcv  28077  xrge0iifiso  28078  xrge0iifhom  28080  sinccvglem  29235  dvasin  30308  areacirclem4  30315  gtnelioc  31726  limcicciooub  31846  fourierdlem4  32096  fourierdlem26  32118  fourierdlem33  32125  fourierdlem37  32129  fourierdlem65  32157  fourierdlem79  32171  fouriersw  32217  bj-pinftyccb  34767  bj-pinftynminfty  34773
  Copyright terms: Public domain W3C validator