Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc1 Structured version   Unicode version

Theorem elioc1 11678
 Description: Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioc1

Proof of Theorem elioc1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 11640 . 2
21elixx1 11644 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370   w3a 982   wcel 1870   class class class wbr 4426  (class class class)co 6305  cxr 9673   clt 9674   cle 9675  cioc 11636 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-xr 9678  df-ioc 11640 This theorem is referenced by:  ubioc1  11688  elioc2  11697  leordtvallem1  20157  pnfnei  20167  mnfnei  20168  xrge0tsms  21763  lhop1  22843  xrlimcnp  23759  iocinioc2  28197  xrge0tsmsd  28387  xrge0iifcnv  28578  lmxrge0  28597  iocinico  35795  rfcnpre4  36995  iocgtlb  37184  iocleub  37185  eliocd  37190
 Copyright terms: Public domain W3C validator