MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintg Structured version   Unicode version

Theorem elintg 4237
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem elintg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq1 2523 . 2  |-  ( y  =  A  ->  (
y  e.  |^| B  <->  A  e.  |^| B ) )
2 eleq1 2523 . . 3  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32ralbidv 2841 . 2  |-  ( y  =  A  ->  ( A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  e.  x ) )
4 vex 3074 . . 3  |-  y  e. 
_V
54elint2 4236 . 2  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
61, 3, 5vtoclbg 3130 1  |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   A.wral 2795   |^|cint 4229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ral 2800  df-v 3073  df-int 4230
This theorem is referenced by:  elinti  4238  elrint  4270  onmindif  4909  onmindif2  6526  mremre  14653  toponmre  18822  1stcfb  19174  uffixfr  19621  plycpn  21881  insiga  26718  dfon2lem8  27740  trintALTVD  31919  trintALT  31920
  Copyright terms: Public domain W3C validator