MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima2 Structured version   Unicode version

Theorem elima2 5331
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.)
Hypothesis
Ref Expression
elima.1  |-  A  e. 
_V
Assertion
Ref Expression
elima2  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  x B A ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem elima2
StepHypRef Expression
1 elima.1 . . 3  |-  A  e. 
_V
21elima 5330 . 2  |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
3 df-rex 2810 . 2  |-  ( E. x  e.  C  x B A  <->  E. x
( x  e.  C  /\  x B A ) )
42, 3bitri 249 1  |-  ( A  e.  ( B " C )  <->  E. x
( x  e.  C  /\  x B A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367   E.wex 1617    e. wcel 1823   E.wrex 2805   _Vcvv 3106   class class class wbr 4439   "cima 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-xp 4994  df-cnv 4996  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001
This theorem is referenced by:  elima3  5332  dminss  5405  imainss  5406  imadif  5645  metcld2  21914  isch2  26342  dfdm5  29449  dfrn5  29450  brimg  29818
  Copyright terms: Public domain W3C validator