MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico2 Structured version   Unicode version

Theorem elico2 11588
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )

Proof of Theorem elico2
StepHypRef Expression
1 rexr 9639 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 elico1 11572 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
31, 2sylan 471 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
4 mnfxr 11323 . . . . . . . 8  |- -oo  e.  RR*
54a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  e.  RR* )
61ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  e.  RR* )
7 simpr1 1002 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR* )
8 mnflt 11333 . . . . . . . 8  |-  ( A  e.  RR  -> -oo  <  A )
98ad2antrr 725 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  A )
10 simpr2 1003 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  <_  C
)
115, 6, 7, 9, 10xrltletrd 11364 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  C )
12 simplr 754 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  e.  RR* )
13 pnfxr 11321 . . . . . . . 8  |- +oo  e.  RR*
1413a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> +oo  e.  RR* )
15 simpr3 1004 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  <  B
)
16 pnfge 11339 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
1716ad2antlr 726 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  <_ +oo )
187, 12, 14, 15, 17xrltletrd 11364 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  < +oo )
19 xrrebnd 11369 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
207, 19syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2111, 18, 20mpbir2and 920 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR )
2221, 10, 153jca 1176 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
2322ex 434 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
24 rexr 9639 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
25243anim1i 1182 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  < 
B ) )
2623, 25impbid1 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
273, 26bitrd 253 1  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4447  (class class class)co 6284   RRcr 9491   +oocpnf 9625   -oocmnf 9626   RR*cxr 9627    < clt 9628    <_ cle 9629   [,)cico 11531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-pre-lttri 9566  ax-pre-lttrn 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-ico 11535
This theorem is referenced by:  icossre  11605  elicopnf  11620  icoshft  11642  rge0srg  18283  metustexhalfOLD  20829  metustexhalf  20830  cnbl0  21044  icoopnst  21202  iocopnst  21203  icopnfcnv  21205  icopnfhmeo  21206  iccpnfcnv  21207  psercnlem2  22581  psercnlem1  22582  psercn  22583  abelth  22598  tanord1  22685  tanord  22686  efopnlem1  22793  logtayl  22797  rlimcnp  23051  rlimcnp2  23052  dchrvmasumlem2  23439  dchrvmasumiflem1  23442  pntlemb  23538  pnt  23555  ubico  27282  xrge0slmod  27525  voliune  27869  volfiniune  27870  dya2icoseg  27916  sibfinima  27949  tan2h  29652  itg2addnclem2  29672  icodiamlt  30388  modelico  30389  limciccioolb  31191  cncfiooicclem1  31260  fourierdlem32  31467  fourierdlem43  31478  fourierdlem63  31498  fourierdlem79  31514  fouriersw  31560
  Copyright terms: Public domain W3C validator