MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico2 Structured version   Unicode version

Theorem elico2 11355
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )

Proof of Theorem elico2
StepHypRef Expression
1 rexr 9425 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 elico1 11339 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B
) ) )
31, 2sylan 468 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
4 mnfxr 11090 . . . . . . . 8  |- -oo  e.  RR*
54a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  e.  RR* )
61ad2antrr 720 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  e.  RR* )
7 simpr1 989 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR* )
8 mnflt 11100 . . . . . . . 8  |-  ( A  e.  RR  -> -oo  <  A )
98ad2antrr 720 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  A )
10 simpr2 990 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  A  <_  C
)
115, 6, 7, 9, 10xrltletrd 11131 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> -oo  <  C )
12 simplr 749 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  e.  RR* )
13 pnfxr 11088 . . . . . . . 8  |- +oo  e.  RR*
1413a1i 11 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  -> +oo  e.  RR* )
15 simpr3 991 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  <  B
)
16 pnfge 11106 . . . . . . . 8  |-  ( B  e.  RR*  ->  B  <_ +oo )
1716ad2antlr 721 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  B  <_ +oo )
187, 12, 14, 15, 17xrltletrd 11131 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  < +oo )
19 xrrebnd 11136 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
207, 19syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  <->  ( -oo  <  C  /\  C  < +oo ) ) )
2111, 18, 20mpbir2and 908 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  C  e.  RR )
2221, 10, 153jca 1163 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) )  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) )
2322ex 434 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  ->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
24 rexr 9425 . . . 4  |-  ( C  e.  RR  ->  C  e.  RR* )
25243anim1i 1169 . . 3  |-  ( ( C  e.  RR  /\  A  <_  C  /\  C  <  B )  ->  ( C  e.  RR*  /\  A  <_  C  /\  C  < 
B ) )
2623, 25impbid1 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( ( C  e. 
RR*  /\  A  <_  C  /\  C  <  B
)  <->  ( C  e.  RR  /\  A  <_  C  /\  C  <  B
) ) )
273, 26bitrd 253 1  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( C  e.  ( A [,) B )  <-> 
( C  e.  RR  /\  A  <_  C  /\  C  <  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    e. wcel 1761   class class class wbr 4289  (class class class)co 6090   RRcr 9277   +oocpnf 9411   -oocmnf 9412   RR*cxr 9413    < clt 9414    <_ cle 9415   [,)cico 11298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-pre-lttri 9352  ax-pre-lttrn 9353
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-po 4637  df-so 4638  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-ico 11302
This theorem is referenced by:  icossre  11372  elicopnf  11381  icoshft  11403  rge0srg  17841  metustexhalfOLD  20097  metustexhalf  20098  cnbl0  20312  icoopnst  20470  iocopnst  20471  icopnfcnv  20473  icopnfhmeo  20474  iccpnfcnv  20475  psercnlem2  21848  psercnlem1  21849  psercn  21850  abelth  21865  tanord1  21952  tanord  21953  efopnlem1  22060  logtayl  22064  rlimcnp  22318  rlimcnp2  22319  dchrvmasumlem2  22706  dchrvmasumiflem1  22709  pntlemb  22805  pnt  22822  ubico  25998  xrge0slmod  26248  voliune  26581  volfiniune  26582  dya2icoseg  26628  sibfinima  26655  tan2h  28349  itg2addnclem2  28369  icodiamlt  29086  modelico  29087
  Copyright terms: Public domain W3C validator