![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliccd | Structured version Visualization version Unicode version |
Description: Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
eliccd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eliccd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eliccd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eliccd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eliccd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eliccd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eliccd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eliccd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eliccd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eliccd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | elicc2 11706 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | syl2anc 667 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 3, 7 | mpbir3and 1192 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1671 ax-4 1684 ax-5 1760 ax-6 1807 ax-7 1853 ax-8 1891 ax-9 1898 ax-10 1917 ax-11 1922 ax-12 1935 ax-13 2093 ax-ext 2433 ax-sep 4528 ax-nul 4537 ax-pow 4584 ax-pr 4642 ax-un 6588 ax-cnex 9600 ax-resscn 9601 ax-pre-lttri 9618 ax-pre-lttrn 9619 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3or 987 df-3an 988 df-tru 1449 df-ex 1666 df-nf 1670 df-sb 1800 df-eu 2305 df-mo 2306 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2583 df-ne 2626 df-nel 2627 df-ral 2744 df-rex 2745 df-rab 2748 df-v 3049 df-sbc 3270 df-csb 3366 df-dif 3409 df-un 3411 df-in 3413 df-ss 3420 df-nul 3734 df-if 3884 df-pw 3955 df-sn 3971 df-pr 3973 df-op 3977 df-uni 4202 df-br 4406 df-opab 4465 df-mpt 4466 df-id 4752 df-po 4758 df-so 4759 df-xp 4843 df-rel 4844 df-cnv 4845 df-co 4846 df-dm 4847 df-rn 4848 df-res 4849 df-ima 4850 df-iota 5549 df-fun 5587 df-fn 5588 df-f 5589 df-f1 5590 df-fo 5591 df-f1o 5592 df-fv 5593 df-ov 6298 df-oprab 6299 df-mpt2 6300 df-er 7368 df-en 7575 df-dom 7576 df-sdom 7577 df-pnf 9682 df-mnf 9683 df-xr 9684 df-ltxr 9685 df-le 9686 df-icc 11649 |
This theorem is referenced by: iccshift 37629 limciccioolb 37711 cncfiooicclem1 37781 iblspltprt 37860 itgspltprt 37866 itgiccshift 37867 itgperiod 37868 itgsbtaddcnst 37869 fourierdlem15 37994 fourierdlem17 37996 fourierdlem40 38020 fourierdlem50 38030 fourierdlem51 38031 fourierdlem62 38042 fourierdlem63 38043 fourierdlem64 38044 fourierdlem65 38045 fourierdlem73 38053 fourierdlem74 38054 fourierdlem75 38055 fourierdlem76 38056 fourierdlem78 38058 fourierdlem81 38061 fourierdlem82 38062 fourierdlem92 38072 fourierdlem93 38073 fourierdlem101 38081 fourierdlem103 38083 fourierdlem104 38084 fourierdlem107 38087 fourierdlem111 38091 salgencntex 38212 hoidmv1lelem2 38424 hoidmvlelem1 38427 hoidmvlelem2 38428 |
Copyright terms: Public domain | W3C validator |