MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhomai2 Structured version   Unicode version

Theorem elhomai2 15210
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h  |-  H  =  (Homa
`  C )
homafval.b  |-  B  =  ( Base `  C
)
homafval.c  |-  ( ph  ->  C  e.  Cat )
homaval.j  |-  J  =  ( Hom  `  C
)
homaval.x  |-  ( ph  ->  X  e.  B )
homaval.y  |-  ( ph  ->  Y  e.  B )
elhomai.f  |-  ( ph  ->  F  e.  ( X J Y ) )
Assertion
Ref Expression
elhomai2  |-  ( ph  -> 
<. X ,  Y ,  F >.  e.  ( X H Y ) )

Proof of Theorem elhomai2
StepHypRef Expression
1 df-ot 4031 . 2  |-  <. X ,  Y ,  F >.  = 
<. <. X ,  Y >. ,  F >.
2 homarcl.h . . . 4  |-  H  =  (Homa
`  C )
3 homafval.b . . . 4  |-  B  =  ( Base `  C
)
4 homafval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 homaval.j . . . 4  |-  J  =  ( Hom  `  C
)
6 homaval.x . . . 4  |-  ( ph  ->  X  e.  B )
7 homaval.y . . . 4  |-  ( ph  ->  Y  e.  B )
8 elhomai.f . . . 4  |-  ( ph  ->  F  e.  ( X J Y ) )
92, 3, 4, 5, 6, 7, 8elhomai 15209 . . 3  |-  ( ph  -> 
<. X ,  Y >. ( X H Y ) F )
10 df-br 4443 . . 3  |-  ( <. X ,  Y >. ( X H Y ) F  <->  <. <. X ,  Y >. ,  F >.  e.  ( X H Y ) )
119, 10sylib 196 . 2  |-  ( ph  -> 
<. <. X ,  Y >. ,  F >.  e.  ( X H Y ) )
121, 11syl5eqel 2554 1  |-  ( ph  -> 
<. X ,  Y ,  F >.  e.  ( X H Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   <.cop 4028   <.cotp 4030   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   Basecbs 14481   Hom chom 14557   Catccat 14910  Homachoma 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-ot 4031  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-homa 15202
This theorem is referenced by:  idahom  15236  coahom  15246
  Copyright terms: Public domain W3C validator