MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhoma Structured version   Unicode version

Theorem elhoma 14896
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h  |-  H  =  (Homa
`  C )
homafval.b  |-  B  =  ( Base `  C
)
homafval.c  |-  ( ph  ->  C  e.  Cat )
homaval.j  |-  J  =  ( Hom  `  C
)
homaval.x  |-  ( ph  ->  X  e.  B )
homaval.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
elhoma  |-  ( ph  ->  ( Z ( X H Y ) F  <-> 
( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) ) )

Proof of Theorem elhoma
StepHypRef Expression
1 homarcl.h . . . 4  |-  H  =  (Homa
`  C )
2 homafval.b . . . 4  |-  B  =  ( Base `  C
)
3 homafval.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 homaval.j . . . 4  |-  J  =  ( Hom  `  C
)
5 homaval.x . . . 4  |-  ( ph  ->  X  e.  B )
6 homaval.y . . . 4  |-  ( ph  ->  Y  e.  B )
71, 2, 3, 4, 5, 6homaval 14895 . . 3  |-  ( ph  ->  ( X H Y )  =  ( {
<. X ,  Y >. }  X.  ( X J Y ) ) )
87breqd 4300 . 2  |-  ( ph  ->  ( Z ( X H Y ) F  <-> 
Z ( { <. X ,  Y >. }  X.  ( X J Y ) ) F ) )
9 brxp 4866 . . 3  |-  ( Z ( { <. X ,  Y >. }  X.  ( X J Y ) ) F  <->  ( Z  e. 
{ <. X ,  Y >. }  /\  F  e.  ( X J Y ) ) )
10 opex 4553 . . . . 5  |-  <. X ,  Y >.  e.  _V
1110elsnc2 3905 . . . 4  |-  ( Z  e.  { <. X ,  Y >. }  <->  Z  =  <. X ,  Y >. )
1211anbi1i 690 . . 3  |-  ( ( Z  e.  { <. X ,  Y >. }  /\  F  e.  ( X J Y ) )  <->  ( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) )
139, 12bitri 249 . 2  |-  ( Z ( { <. X ,  Y >. }  X.  ( X J Y ) ) F  <->  ( Z  = 
<. X ,  Y >.  /\  F  e.  ( X J Y ) ) )
148, 13syl6bb 261 1  |-  ( ph  ->  ( Z ( X H Y ) F  <-> 
( Z  =  <. X ,  Y >.  /\  F  e.  ( X J Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {csn 3874   <.cop 3880   class class class wbr 4289    X. cxp 4834   ` cfv 5415  (class class class)co 6090   Basecbs 14170   Hom chom 14245   Catccat 14598  Homachoma 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-homa 14890
This theorem is referenced by:  elhomai  14897  homa1  14901  homahom2  14902
  Copyright terms: Public domain W3C validator