HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elhmop Structured version   Unicode version

Theorem elhmop 26919
Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elhmop  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
Distinct variable group:    x, y, T

Proof of Theorem elhmop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5871 . . . . . 6  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
21oveq2d 6312 . . . . 5  |-  ( t  =  T  ->  (
x  .ih  ( t `  y ) )  =  ( x  .ih  ( T `  y )
) )
3 fveq1 5871 . . . . . 6  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
43oveq1d 6311 . . . . 5  |-  ( t  =  T  ->  (
( t `  x
)  .ih  y )  =  ( ( T `
 x )  .ih  y ) )
52, 4eqeq12d 2479 . . . 4  |-  ( t  =  T  ->  (
( x  .ih  (
t `  y )
)  =  ( ( t `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( T `  x
)  .ih  y )
) )
652ralbidv 2901 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( t `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( T `  x )  .ih  y
) ) )
7 df-hmop 26890 . . 3  |-  HrmOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( t `  y
) )  =  ( ( t `  x
)  .ih  y ) }
86, 7elrab2 3259 . 2  |-  ( T  e.  HrmOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( T `  x )  .ih  y
) ) )
9 ax-hilex 26043 . . . 4  |-  ~H  e.  _V
109, 9elmap 7466 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1110anbi1i 695 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( T `  x ) 
.ih  y ) )  <-> 
( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
128, 11bitri 249 1  |-  ( T  e.  HrmOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( T `
 x )  .ih  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   ~Hchil 25963    .ih csp 25966   HrmOpcho 25994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-hilex 26043
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-map 7440  df-hmop 26890
This theorem is referenced by:  hmopf  26920  hmop  26968  hmopadj2  26987  idhmop  27028  0hmop  27029  lnophmi  27064  hmops  27066  hmopm  27067  hmopco  27069  pjhmopi  27192
  Copyright terms: Public domain W3C validator