Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Unicode version

Theorem elhf2 28218
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1  |-  A  e. 
_V
Assertion
Ref Expression
elhf2  |-  ( A  e. Hf 
<->  ( rank `  A
)  e.  om )

Proof of Theorem elhf2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elhf 28217 . 2  |-  ( A  e. Hf 
<->  E. x  e.  om  A  e.  ( R1 `  x ) )
2 omon 6492 . . 3  |-  ( om  e.  On  \/  om  =  On )
3 nnon 6487 . . . . . . . . 9  |-  ( x  e.  om  ->  x  e.  On )
4 elhf2.1 . . . . . . . . . 10  |-  A  e. 
_V
54rankr1a 8048 . . . . . . . . 9  |-  ( x  e.  On  ->  ( A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  x
) )
63, 5syl 16 . . . . . . . 8  |-  ( x  e.  om  ->  ( A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  x
) )
76adantl 466 . . . . . . 7  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  x ) )
8 elnn 6491 . . . . . . . . 9  |-  ( ( ( rank `  A
)  e.  x  /\  x  e.  om )  ->  ( rank `  A
)  e.  om )
98expcom 435 . . . . . . . 8  |-  ( x  e.  om  ->  (
( rank `  A )  e.  x  ->  ( rank `  A )  e.  om ) )
109adantl 466 . . . . . . 7  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( ( rank `  A
)  e.  x  -> 
( rank `  A )  e.  om ) )
117, 10sylbid 215 . . . . . 6  |-  ( ( om  e.  On  /\  x  e.  om )  ->  ( A  e.  ( R1 `  x )  ->  ( rank `  A
)  e.  om )
)
1211rexlimdva 2846 . . . . 5  |-  ( om  e.  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  ->  ( rank `  A )  e. 
om ) )
13 peano2 6501 . . . . . . . 8  |-  ( (
rank `  A )  e.  om  ->  suc  ( rank `  A )  e.  om )
1413adantr 465 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  suc  ( rank `  A
)  e.  om )
15 r1rankid 8071 . . . . . . . . . 10  |-  ( A  e.  _V  ->  A  C_  ( R1 `  ( rank `  A ) ) )
164, 15mp1i 12 . . . . . . . . 9  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
174elpw 3871 . . . . . . . . 9  |-  ( A  e.  ~P ( R1
`  ( rank `  A
) )  <->  A  C_  ( R1 `  ( rank `  A
) ) )
1816, 17sylibr 212 . . . . . . . 8  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  e.  ~P ( R1 `  ( rank `  A
) ) )
19 nnon 6487 . . . . . . . . . 10  |-  ( (
rank `  A )  e.  om  ->  ( rank `  A )  e.  On )
20 r1suc 7982 . . . . . . . . . 10  |-  ( (
rank `  A )  e.  On  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( (
rank `  A )  e.  om  ->  ( R1 ` 
suc  ( rank `  A
) )  =  ~P ( R1 `  ( rank `  A ) ) )
2221adantr 465 . . . . . . . 8  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  -> 
( R1 `  suc  ( rank `  A )
)  =  ~P ( R1 `  ( rank `  A
) ) )
2318, 22eleqtrrd 2520 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )
24 fveq2 5696 . . . . . . . . 9  |-  ( x  =  suc  ( rank `  A )  ->  ( R1 `  x )  =  ( R1 `  suc  ( rank `  A )
) )
2524eleq2d 2510 . . . . . . . 8  |-  ( x  =  suc  ( rank `  A )  ->  ( A  e.  ( R1 `  x )  <->  A  e.  ( R1 `  suc  ( rank `  A ) ) ) )
2625rspcev 3078 . . . . . . 7  |-  ( ( suc  ( rank `  A
)  e.  om  /\  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )  ->  E. x  e.  om  A  e.  ( R1 `  x ) )
2714, 23, 26syl2anc 661 . . . . . 6  |-  ( ( ( rank `  A
)  e.  om  /\  om  e.  On )  ->  E. x  e.  om  A  e.  ( R1 `  x ) )
2827expcom 435 . . . . 5  |-  ( om  e.  On  ->  (
( rank `  A )  e.  om  ->  E. x  e.  om  A  e.  ( R1 `  x ) ) )
2912, 28impbid 191 . . . 4  |-  ( om  e.  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  om ) )
304tz9.13 8003 . . . . . 6  |-  E. x  e.  On  A  e.  ( R1 `  x )
31 rankon 8007 . . . . . 6  |-  ( rank `  A )  e.  On
3230, 312th 239 . . . . 5  |-  ( E. x  e.  On  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  On )
33 rexeq 2923 . . . . . 6  |-  ( om  =  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  E. x  e.  On  A  e.  ( R1 `  x ) ) )
34 eleq2 2504 . . . . . 6  |-  ( om  =  On  ->  (
( rank `  A )  e.  om  <->  ( rank `  A
)  e.  On ) )
3533, 34bibi12d 321 . . . . 5  |-  ( om  =  On  ->  (
( E. x  e. 
om  A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  om )  <->  ( E. x  e.  On  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  On ) ) )
3632, 35mpbiri 233 . . . 4  |-  ( om  =  On  ->  ( E. x  e.  om  A  e.  ( R1 `  x )  <->  ( rank `  A )  e.  om ) )
3729, 36jaoi 379 . . 3  |-  ( ( om  e.  On  \/  om  =  On )  -> 
( E. x  e. 
om  A  e.  ( R1 `  x )  <-> 
( rank `  A )  e.  om ) )
382, 37ax-mp 5 . 2  |-  ( E. x  e.  om  A  e.  ( R1 `  x
)  <->  ( rank `  A
)  e.  om )
391, 38bitri 249 1  |-  ( A  e. Hf 
<->  ( rank `  A
)  e.  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2721   _Vcvv 2977    C_ wss 3333   ~Pcpw 3865   Oncon0 4724   suc csuc 4726   ` cfv 5423   omcom 6481   R1cr1 7974   rankcrnk 7975   Hf chf 28215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-reg 7812  ax-inf2 7852
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-om 6482  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-r1 7976  df-rank 7977  df-hf 28216
This theorem is referenced by:  elhf2g  28219  hfsn  28222
  Copyright terms: Public domain W3C validator