Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elgiso Structured version   Unicode version

Theorem elgiso 29875
Description: Membership in the set of group isomorphisms from  G to  H. (Contributed by Paul Chapman, 25-Feb-2008.)
Assertion
Ref Expression
elgiso  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G  GrpOpIso  H )  <->  ( F  e.  ( G GrpOpHom  H )  /\  F : ran  G -1-1-onto-> ran  H ) ) )

Proof of Theorem elgiso
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6284 . . . . 5  |-  ( g  =  G  ->  (
g GrpOpHom  h )  =  ( G GrpOpHom  h ) )
2 rneq 5048 . . . . . 6  |-  ( g  =  G  ->  ran  g  =  ran  G )
3 f1oeq2 5790 . . . . . 6  |-  ( ran  g  =  ran  G  ->  ( f : ran  g
-1-1-onto-> ran  h  <->  f : ran  G -1-1-onto-> ran  h ) )
42, 3syl 17 . . . . 5  |-  ( g  =  G  ->  (
f : ran  g -1-1-onto-> ran  h 
<->  f : ran  G -1-1-onto-> ran  h ) )
51, 4rabeqbidv 3053 . . . 4  |-  ( g  =  G  ->  { f  e.  ( g GrpOpHom  h
)  |  f : ran  g -1-1-onto-> ran  h }  =  { f  e.  ( G GrpOpHom  h )  |  f : ran  G -1-1-onto-> ran  h } )
6 oveq2 6285 . . . . 5  |-  ( h  =  H  ->  ( G GrpOpHom  h )  =  ( G GrpOpHom  H ) )
7 rneq 5048 . . . . . 6  |-  ( h  =  H  ->  ran  h  =  ran  H )
8 f1oeq3 5791 . . . . . 6  |-  ( ran  h  =  ran  H  ->  ( f : ran  G -1-1-onto-> ran  h  <->  f : ran  G -1-1-onto-> ran 
H ) )
97, 8syl 17 . . . . 5  |-  ( h  =  H  ->  (
f : ran  G -1-1-onto-> ran  h 
<->  f : ran  G -1-1-onto-> ran  H ) )
106, 9rabeqbidv 3053 . . . 4  |-  ( h  =  H  ->  { f  e.  ( G GrpOpHom  h
)  |  f : ran  G -1-1-onto-> ran  h }  =  { f  e.  ( G GrpOpHom  H )  |  f : ran  G -1-1-onto-> ran  H } )
11 df-gisoOLD 25762 . . . 4  |-  GrpOpIso  =  ( g  e.  GrpOp ,  h  e.  GrpOp  |->  { f  e.  ( g GrpOpHom  h )  |  f : ran  g
-1-1-onto-> ran  h } )
12 ovex 6305 . . . . 5  |-  ( G GrpOpHom  H )  e.  _V
1312rabex 4544 . . . 4  |-  { f  e.  ( G GrpOpHom  H )  |  f : ran  G -1-1-onto-> ran 
H }  e.  _V
145, 10, 11, 13ovmpt2 6418 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( G  GrpOpIso  H )  =  { f  e.  ( G GrpOpHom  H )  |  f : ran  G -1-1-onto-> ran  H } )
1514eleq2d 2472 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G  GrpOpIso  H )  <->  F  e.  { f  e.  ( G GrpOpHom  H )  |  f : ran  G -1-1-onto-> ran 
H } ) )
16 f1oeq1 5789 . . 3  |-  ( f  =  F  ->  (
f : ran  G -1-1-onto-> ran  H  <-> 
F : ran  G -1-1-onto-> ran  H ) )
1716elrab 3206 . 2  |-  ( F  e.  { f  e.  ( G GrpOpHom  H )  |  f : ran  G -1-1-onto-> ran 
H }  <->  ( F  e.  ( G GrpOpHom  H )  /\  F : ran  G -1-1-onto-> ran  H ) )
1815, 17syl6bb 261 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( F  e.  ( G  GrpOpIso  H )  <->  ( F  e.  ( G GrpOpHom  H )  /\  F : ran  G -1-1-onto-> ran  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2757   ran crn 4823   -1-1-onto->wf1o 5567  (class class class)co 6277   GrpOpcgr 25588   GrpOpHom cghomOLD 25759    GrpOpIso cgisoOLD 25761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-gisoOLD 25762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator