MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Structured version   Unicode version

Theorem elgch 8996
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch  |-  ( A  e.  V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem elgch
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-gch 8995 . . . 4  |- GCH  =  ( Fin  u.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )
21eleq2i 2545 . . 3  |-  ( A  e. GCH 
<->  A  e.  ( Fin 
u.  { y  | 
A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y ) } ) )
3 elun 3645 . . 3  |-  ( A  e.  ( Fin  u.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )  <->  ( A  e.  Fin  \/  A  e. 
{ y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } ) )
42, 3bitri 249 . 2  |-  ( A  e. GCH 
<->  ( A  e.  Fin  \/  A  e.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } ) )
5 breq1 4450 . . . . . . 7  |-  ( y  =  A  ->  (
y  ~<  x  <->  A  ~<  x ) )
6 pweq 4013 . . . . . . . 8  |-  ( y  =  A  ->  ~P y  =  ~P A
)
76breq2d 4459 . . . . . . 7  |-  ( y  =  A  ->  (
x  ~<  ~P y  <->  x  ~<  ~P A ) )
85, 7anbi12d 710 . . . . . 6  |-  ( y  =  A  ->  (
( y  ~<  x  /\  x  ~<  ~P y
)  <->  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
98notbid 294 . . . . 5  |-  ( y  =  A  ->  ( -.  ( y  ~<  x  /\  x  ~<  ~P y
)  <->  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) )
109albidv 1689 . . . 4  |-  ( y  =  A  ->  ( A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y )  <->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
1110elabg 3251 . . 3  |-  ( A  e.  V  ->  ( A  e.  { y  |  A. x  -.  (
y  ~<  x  /\  x  ~<  ~P y ) }  <->  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A ) ) )
1211orbi2d 701 . 2  |-  ( A  e.  V  ->  (
( A  e.  Fin  \/  A  e.  { y  |  A. x  -.  ( y  ~<  x  /\  x  ~<  ~P y
) } )  <->  ( A  e.  Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
134, 12syl5bb 257 1  |-  ( A  e.  V  ->  ( A  e. GCH  <->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452    u. cun 3474   ~Pcpw 4010   class class class wbr 4447    ~< csdm 7512   Fincfn 7513  GCHcgch 8994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-gch 8995
This theorem is referenced by:  gchi  8998  engch  9002  hargch  9047  alephgch  9048
  Copyright terms: Public domain W3C validator