MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzom1elp1fzo Structured version   Unicode version

Theorem elfzom1elp1fzo 11842
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( I  +  1 )  e.  ( 0..^ N ) )

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 11802 . . . . . . 7  |-  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  I  e.  ( 0 ... ( N  -  1 ) ) )
2 elfzuz2 11682 . . . . . . 7  |-  ( I  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
3 elnn0uz 11110 . . . . . . . 8  |-  ( ( N  -  1 )  e.  NN0  <->  ( N  - 
1 )  e.  (
ZZ>= `  0 ) )
4 zcn 10860 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
54anim1i 568 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  ( N  e.  CC  /\  ( N  -  1 )  e.  NN0 )
)
6 elnnnn0 10830 . . . . . . . . . 10  |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
NN0 ) )
75, 6sylibr 212 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  N  e.  NN )
87expcom 435 . . . . . . . 8  |-  ( ( N  -  1 )  e.  NN0  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
93, 8sylbir 213 . . . . . . 7  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
101, 2, 93syl 20 . . . . . 6  |-  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
1110impcom 430 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  NN )
12 1nn0 10802 . . . . . . 7  |-  1  e.  NN0
1312a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  NN0 )
14 nnnn0 10793 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
15 nnge1 10553 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  N )
1613, 14, 153jca 1171 . . . . 5  |-  ( N  e.  NN  ->  (
1  e.  NN0  /\  N  e.  NN0  /\  1  <_  N ) )
1711, 16syl 16 . . . 4  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 1  e.  NN0  /\  N  e.  NN0  /\  1  <_  N ) )
18 elfz2nn0 11759 . . . 4  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  NN0  /\  N  e. 
NN0  /\  1  <_  N ) )
1917, 18sylibr 212 . . 3  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
1  e.  ( 0 ... N ) )
20 fzossrbm1 11813 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ N ) )
2120adantr 465 . . . . . 6  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0..^ N ) )
22 fzossfz 11805 . . . . . 6  |-  ( 0..^ N )  C_  (
0 ... N )
2321, 22syl6ss 3511 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0 ... N ) )
24 simpr 461 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  I  e.  ( 0..^ ( N  -  1 ) ) )
2523, 24jca 532 . . . 4  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( ( 0..^ ( N  -  1 ) )  C_  ( 0 ... N )  /\  I  e.  ( 0..^ ( N  -  1 ) ) ) )
26 ssel2 3494 . . . 4  |-  ( ( ( 0..^ ( N  -  1 ) ) 
C_  ( 0 ... N )  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  I  e.  ( 0 ... N
) )
27 elfzubelfz 11689 . . . 4  |-  ( I  e.  ( 0 ... N )  ->  N  e.  ( 0 ... N
) )
2825, 26, 273syl 20 . . 3  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  ( 0 ... N ) )
2919, 28jca 532 . 2  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 1  e.  ( 0 ... N )  /\  N  e.  ( 0 ... N ) ) )
30 elfzodifsumelfzo 11841 . 2  |-  ( ( 1  e.  ( 0 ... N )  /\  N  e.  ( 0 ... N ) )  ->  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  ( I  + 
1 )  e.  ( 0..^ N ) ) )
3129, 24, 30sylc 60 1  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( I  +  1 )  e.  ( 0..^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    e. wcel 1762    C_ wss 3471   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   CCcc 9481   0cc0 9483   1c1 9484    + caddc 9486    <_ cle 9620    - cmin 9796   NNcn 10527   NN0cn0 10786   ZZcz 10855   ZZ>=cuz 11073   ...cfz 11663  ..^cfzo 11783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-n0 10787  df-z 10856  df-uz 11074  df-fz 11664  df-fzo 11784
This theorem is referenced by:  clwlkisclwwlk  24453  clwwlkf  24458  clwlkfclwwlk  24508
  Copyright terms: Public domain W3C validator