MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzodifsumelfzo Structured version   Unicode version

Theorem elfzodifsumelfzo 11861
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... P ) )  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 11777 . . 3  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2 elfz2nn0 11777 . . . . 5  |-  ( N  e.  ( 0 ... P )  <->  ( N  e.  NN0  /\  P  e. 
NN0  /\  N  <_  P ) )
3 elfzo0 11842 . . . . . . . 8  |-  ( I  e.  ( 0..^ ( N  -  M ) )  <->  ( I  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  I  <  ( N  -  M ) ) )
4 nn0z 10893 . . . . . . . . . . . . 13  |-  ( M  e.  NN0  ->  M  e.  ZZ )
5 nn0z 10893 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 znnsub 10916 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( N  -  M )  e.  NN ) )
74, 5, 6syl2an 477 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  <->  ( N  -  M )  e.  NN ) )
8 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  I  e.  NN0 )
9 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  M  e.  NN0 )
10 nn0addcl 10837 . . . . . . . . . . . . . . . 16  |-  ( ( I  e.  NN0  /\  M  e.  NN0 )  -> 
( I  +  M
)  e.  NN0 )
118, 9, 10syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  e.  NN0 )
1211adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  e.  NN0 )
13 0red 9600 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  RR )
14 nn0re 10810 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  NN0  ->  M  e.  RR )
1514adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  RR )
16 nn0re 10810 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN0  ->  N  e.  RR )
1716adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
1813, 15, 173jca 1177 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )
)
1918adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR ) )
20 nn0ge0 10827 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  ->  0  <_  M )
2120adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
0  <_  M )
2221anim1i 568 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( 0  <_  M  /\  M  <  N
) )
23 lelttr 9678 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  M  /\  M  <  N )  ->  0  <  N
) )
2419, 22, 23sylc 60 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  0  <  N
)
2524ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  0  <  N ) )
26 0red 9600 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
0  e.  RR )
2716adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
28 nn0re 10810 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN0  ->  P  e.  RR )
2928adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  ->  P  e.  RR )
30 ltletr 9679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  P  e.  RR )  ->  (
( 0  <  N  /\  N  <_  P )  ->  0  <  P
) )
3126, 27, 29, 30syl3anc 1229 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  < 
N  /\  N  <_  P )  ->  0  <  P ) )
32 nn0z 10893 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  NN0  ->  P  e.  ZZ )
33 elnnz 10880 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  NN  <->  ( P  e.  ZZ  /\  0  < 
P ) )
3433simplbi2 625 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( P  e.  ZZ  ->  (
0  <  P  ->  P  e.  NN ) )
3532, 34syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  NN0  ->  ( 0  <  P  ->  P  e.  NN ) )
3635adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  P  ->  P  e.  NN ) )
3731, 36syld 44 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0  < 
N  /\  N  <_  P )  ->  P  e.  NN ) )
3837exp4b 607 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  NN0  ->  ( N  e.  NN0  ->  ( 0  <  N  ->  ( N  <_  P  ->  P  e.  NN ) ) ) )
3938com24 87 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  NN0  ->  ( N  <_  P  ->  (
0  <  N  ->  ( N  e.  NN0  ->  P  e.  NN ) ) ) )
4039imp 429 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P  e.  NN0  /\  N  <_  P )  -> 
( 0  <  N  ->  ( N  e.  NN0  ->  P  e.  NN ) ) )
4140com13 80 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( 0  <  N  ->  (
( P  e.  NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4241adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <  N  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4325, 42syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) ) )
4443imp 429 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( ( P  e.  NN0  /\  N  <_  P )  ->  P  e.  NN ) )
4544adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( ( P  e. 
NN0  /\  N  <_  P )  ->  P  e.  NN ) )
4645imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  P  e.  NN )
47 nn0re 10810 . . . . . . . . . . . . . . . . . . . . 21  |-  ( I  e.  NN0  ->  I  e.  RR )
4847adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  I  e.  RR )
4915adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  M  e.  RR )
50 readdcl 9578 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( I  e.  RR  /\  M  e.  RR )  ->  ( I  +  M
)  e.  RR )
5148, 49, 50syl2anr 478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  e.  RR )
5251adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( I  +  M
)  e.  RR )
5317adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  N  e.  RR )
5453adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  ->  N  e.  RR )
5554adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  ->  N  e.  RR )
5628adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  ->  P  e.  RR )
5752, 55, 563jca 1177 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( ( I  +  M )  e.  RR  /\  N  e.  RR  /\  P  e.  RR )
)
5857adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( (
I  +  M )  e.  RR  /\  N  e.  RR  /\  P  e.  RR ) )
5947adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  I  e.  RR )
6015adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  M  e.  RR )
6117adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  N  e.  RR )
6259, 60, 61ltaddsubd 10158 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  I  e.  NN0 )  ->  ( ( I  +  M )  < 
N  <->  I  <  ( N  -  M ) ) )
6362exbiri 622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( I  e.  NN0  ->  ( I  <  ( N  -  M )  ->  ( I  +  M
)  <  N )
) )
6463com23 78 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( I  +  M
)  <  N )
) )
6564impd 431 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( I  < 
( N  -  M
)  /\  I  e.  NN0 )  ->  ( I  +  M )  <  N
) )
6665adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  ->  ( ( I  <  ( N  -  M )  /\  I  e.  NN0 )  ->  (
I  +  M )  <  N ) )
6766imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( M  e. 
NN0  /\  N  e.  NN0 )  /\  M  < 
N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  -> 
( I  +  M
)  <  N )
6867adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  -> 
( I  +  M
)  <  N )
6968anim1i 568 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( (
I  +  M )  <  N  /\  N  <_  P ) )
70 ltletr 9679 . . . . . . . . . . . . . . . 16  |-  ( ( ( I  +  M
)  e.  RR  /\  N  e.  RR  /\  P  e.  RR )  ->  (
( ( I  +  M )  <  N  /\  N  <_  P )  ->  ( I  +  M )  <  P
) )
7158, 69, 70sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  M  <  N )  /\  ( I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  P  e.  NN0 )  /\  N  <_  P
)  ->  ( I  +  M )  <  P
)
7271anasss 647 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  <  P
)
73 elfzo0 11842 . . . . . . . . . . . . . 14  |-  ( ( I  +  M )  e.  ( 0..^ P )  <->  ( ( I  +  M )  e. 
NN0  /\  P  e.  NN  /\  ( I  +  M )  <  P
) )
7412, 46, 72, 73syl3anbrc 1181 . . . . . . . . . . . . 13  |-  ( ( ( ( ( M  e.  NN0  /\  N  e. 
NN0 )  /\  M  <  N )  /\  (
I  <  ( N  -  M )  /\  I  e.  NN0 ) )  /\  ( P  e.  NN0  /\  N  <_  P )
)  ->  ( I  +  M )  e.  ( 0..^ P ) )
7574exp53 617 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  ( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
767, 75sylbird 235 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( N  -  M )  e.  NN  ->  ( I  <  ( N  -  M )  ->  ( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
77763adant3 1017 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( N  -  M
)  e.  NN  ->  ( I  <  ( N  -  M )  -> 
( I  e.  NN0  ->  ( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
7877com14 88 . . . . . . . . 9  |-  ( I  e.  NN0  ->  ( ( N  -  M )  e.  NN  ->  (
I  <  ( N  -  M )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( ( P  e. 
NN0  /\  N  <_  P )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) ) ) )
79783imp 1191 . . . . . . . 8  |-  ( ( I  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  I  <  ( N  -  M ) )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
)  ->  ( ( P  e.  NN0  /\  N  <_  P )  ->  (
I  +  M )  e.  ( 0..^ P ) ) ) )
803, 79sylbi 195 . . . . . . 7  |-  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  (
( P  e.  NN0  /\  N  <_  P )  ->  ( I  +  M
)  e.  ( 0..^ P ) ) ) )
8180com13 80 . . . . . 6  |-  ( ( P  e.  NN0  /\  N  <_  P )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 
/\  M  <_  N
)  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) ) )
82813adant1 1015 . . . . 5  |-  ( ( N  e.  NN0  /\  P  e.  NN0  /\  N  <_  P )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
832, 82sylbi 195 . . . 4  |-  ( N  e.  ( 0 ... P )  ->  (
( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
8483com12 31 . . 3  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  ( 0 ... P )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
851, 84sylbi 195 . 2  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  ( 0 ... P )  -> 
( I  e.  ( 0..^ ( N  -  M ) )  -> 
( I  +  M
)  e.  ( 0..^ P ) ) ) )
8685imp 429 1  |-  ( ( M  e.  ( 0 ... N )  /\  N  e.  ( 0 ... P ) )  ->  ( I  e.  ( 0..^ ( N  -  M ) )  ->  ( I  +  M )  e.  ( 0..^ P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    e. wcel 1804   class class class wbr 4437  (class class class)co 6281   RRcr 9494   0cc0 9495    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810   NNcn 10542   NN0cn0 10801   ZZcz 10870   ...cfz 11681  ..^cfzo 11803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-n0 10802  df-z 10871  df-uz 11091  df-fz 11682  df-fzo 11804
This theorem is referenced by:  elfzom1elp1fzo  11862  swrdco  12782
  Copyright terms: Public domain W3C validator