MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo2 Structured version   Unicode version

Theorem elfzo2 11548
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo2  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )

Proof of Theorem elfzo2
StepHypRef Expression
1 an4 820 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( (
( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K
)  /\  ( N  e.  ZZ  /\  K  < 
N ) ) )
2 df-3an 967 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ ) )
32anbi1i 695 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N
) ) )
4 eluz2 10859 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
5 3ancoma 972 . . . . 5  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  <->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  M  <_  K ) )
6 df-3an 967 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  M  <_  K )  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K ) )
74, 5, 63bitri 271 . . . 4  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K ) )
87anbi1i 695 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) )  <->  ( (
( K  e.  ZZ  /\  M  e.  ZZ )  /\  M  <_  K
)  /\  ( N  e.  ZZ  /\  K  < 
N ) ) )
91, 3, 83bitr4i 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) )  <->  ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) ) )
10 elfzoelz 11545 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  K  e.  ZZ )
11 elfzoel1 11543 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  M  e.  ZZ )
12 elfzoel2 11544 . . . 4  |-  ( K  e.  ( M..^ N
)  ->  N  e.  ZZ )
1310, 11, 123jca 1168 . . 3  |-  ( K  e.  ( M..^ N
)  ->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
14 elfzo 11547 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M..^ N )  <->  ( M  <_  K  /\  K  < 
N ) ) )
1513, 14biadan2 642 . 2  |-  ( K  e.  ( M..^ N
)  <->  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <  N ) ) )
16 3anass 969 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  < 
N )  <->  ( K  e.  ( ZZ>= `  M )  /\  ( N  e.  ZZ  /\  K  <  N ) ) )
179, 15, 163bitr4i 277 1  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1756   class class class wbr 4285   ` cfv 5411  (class class class)co 6086    < clt 9410    <_ cle 9411   ZZcz 10638   ZZ>=cuz 10853  ..^cfzo 11540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541
This theorem is referenced by:  elfzouz  11549  fzolb  11550  elfzo3  11560  fzouzsplit  11576  elfzo0  11579  fzo1fzo0n0  11580  elfzo1  11587  ssfzo12bi  11614  elfzonelfzo  11619  elfzomelpfzo  11621  modaddmodup  11754  cshwidxmod  12432  cats1fv  12478  bitsfzolem  13622  bitsfzo  13623  bitsmod  13624  bitsfi  13625  bitsinv1lem  13629  bitsinv1  13630  modprm0  13865  lt6abl  16360  iundisj2  20999  dchrisum0flblem2  22727  spthispth  23417  iundisj2f  25877  iundisj2fi  26026  subsubelfzo0  30153  el2fzo  30155  fzoopth  30156  eluzgtdifelfzo  30162
  Copyright terms: Public domain W3C validator