MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo0 Unicode version

Theorem elfzo0 11126
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo0  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )

Proof of Theorem elfzo0
StepHypRef Expression
1 elfzouz 11099 . . . 4  |-  ( A  e.  ( 0..^ B )  ->  A  e.  ( ZZ>= `  0 )
)
2 elnn0uz 10479 . . . 4  |-  ( A  e.  NN0  <->  A  e.  ( ZZ>=
`  0 ) )
31, 2sylibr 204 . . 3  |-  ( A  e.  ( 0..^ B )  ->  A  e.  NN0 )
4 elfzolt3b 11106 . . . 4  |-  ( A  e.  ( 0..^ B )  ->  0  e.  ( 0..^ B ) )
5 lbfzo0 11125 . . . 4  |-  ( 0  e.  ( 0..^ B )  <->  B  e.  NN )
64, 5sylib 189 . . 3  |-  ( A  e.  ( 0..^ B )  ->  B  e.  NN )
7 elfzolt2 11103 . . 3  |-  ( A  e.  ( 0..^ B )  ->  A  <  B )
83, 6, 73jca 1134 . 2  |-  ( A  e.  ( 0..^ B )  ->  ( A  e.  NN0  /\  B  e.  NN  /\  A  < 
B ) )
9 simp1 957 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  NN0 )
109, 2sylib 189 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  ( ZZ>= `  0 )
)
11 nnz 10259 . . . 4  |-  ( B  e.  NN  ->  B  e.  ZZ )
12113ad2ant2 979 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  B  e.  ZZ )
13 simp3 959 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  <  B )
14 elfzo2 11098 . . 3  |-  ( A  e.  ( 0..^ B )  <->  ( A  e.  ( ZZ>= `  0 )  /\  B  e.  ZZ  /\  A  <  B ) )
1510, 12, 13, 14syl3anbrc 1138 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN  /\  A  <  B )  ->  A  e.  ( 0..^ B ) )
168, 15impbii 181 1  |-  ( A  e.  ( 0..^ B )  <->  ( A  e. 
NN0  /\  B  e.  NN  /\  A  <  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ w3a 936    e. wcel 1721   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   0cc0 8946    < clt 9076   NNcn 9956   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444  ..^cfzo 11090
This theorem is referenced by:  elfznelfzo  11147  wrdeqs1cat  11744  swrds2  11835  smueqlem  12957  usgrcyclnl2  21581  nvnencycllem  21583  4cycl4dv  21607  psgnunilem5  27285  psgnunilem2  27286  psgnunilem3  27287  psgnunilem4  27288  hashgcdlem  27384  fzo1fzo0n0  27988  swrdswrd  28011  swrdccatin1  28016  swrdccatin12lem3a  28021  swrdccatin12lem3b  28022  swrdccatin12lem3c  28023  swrdccatin12lem3  28024  swrdccatin12lem4  28025  swrdccatin12  28026  swrdccatin12b  28027  swrdccat3  28029  usgra2pthlem1  28040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-fzo 11091
  Copyright terms: Public domain W3C validator