MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Unicode version

Theorem elfz1 11687
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzval 11684 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } )
21eleq2d 2513 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } ) )
3 breq2 4441 . . . . 5  |-  ( j  =  K  ->  ( M  <_  j  <->  M  <_  K ) )
4 breq1 4440 . . . . 5  |-  ( j  =  K  ->  (
j  <_  N  <->  K  <_  N ) )
53, 4anbi12d 710 . . . 4  |-  ( j  =  K  ->  (
( M  <_  j  /\  j  <_  N )  <-> 
( M  <_  K  /\  K  <_  N ) ) )
65elrab 3243 . . 3  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
7 3anass 978 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
86, 7bitr4i 252 . 2  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )
92, 8syl6bb 261 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {crab 2797   class class class wbr 4437  (class class class)co 6281    <_ cle 9632   ZZcz 10871   ...cfz 11682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-cnex 9551  ax-resscn 9552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-iota 5541  df-fun 5580  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-neg 9813  df-z 10872  df-fz 11683
This theorem is referenced by:  elfz  11688  elfz2  11689  fzen  11713  fzaddel  11728  elfzm11  11759  fzm1  11768  fznn0  11780  phicl2  14279  nndiffz1  27572  fzmul  30208  fzadd2  30209  fz1eqin  30677  jm2.27dlem2  30927  iblspltprt  31662  itgspltprt  31668
  Copyright terms: Public domain W3C validator