MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Unicode version

Theorem elfz1 11598
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fzval 11595 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } )
21eleq2d 2452 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) } ) )
3 breq2 4371 . . . . 5  |-  ( j  =  K  ->  ( M  <_  j  <->  M  <_  K ) )
4 breq1 4370 . . . . 5  |-  ( j  =  K  ->  (
j  <_  N  <->  K  <_  N ) )
53, 4anbi12d 708 . . . 4  |-  ( j  =  K  ->  (
( M  <_  j  /\  j  <_  N )  <-> 
( M  <_  K  /\  K  <_  N ) ) )
65elrab 3182 . . 3  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
7 3anass 975 . . 3  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
86, 7bitr4i 252 . 2  |-  ( K  e.  { j  e.  ZZ  |  ( M  <_  j  /\  j  <_  N ) }  <->  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
) )
92, 8syl6bb 261 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   {crab 2736   class class class wbr 4367  (class class class)co 6196    <_ cle 9540   ZZcz 10781   ...cfz 11593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601  ax-cnex 9459  ax-resscn 9460
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-iota 5460  df-fun 5498  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-neg 9721  df-z 10782  df-fz 11594
This theorem is referenced by:  elfz  11599  elfz2  11600  fzen  11624  fzaddel  11640  elfzm11  11671  fznn0  11692  phicl2  14300  nndiffz1  27749  fzmul  30399  fzadd2  30400  fz1eqin  30867  jm2.27dlem2  31118  iblspltprt  31938  itgspltprt  31944
  Copyright terms: Public domain W3C validator