MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0ubfz0 Structured version   Unicode version

Theorem elfz0ubfz0 11786
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  K  e.  ( 0 ... L ) )

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 11777 . . . 4  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
2 elfz2 11688 . . . . . 6  |-  ( L  e.  ( K ... N )  <->  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) ) )
3 simpr1 1003 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  K  e.  NN0 )
4 elnn0z 10883 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
5 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  L  e.  ZZ )
6 0z 10881 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  ZZ
7 zletr 10914 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  (
( 0  <_  K  /\  K  <_  L )  ->  0  <_  L
) )
86, 7mp3an1 1312 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( 0  <_  K  /\  K  <_  L
)  ->  0  <_  L ) )
9 elnn0z 10883 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  NN0  <->  ( L  e.  ZZ  /\  0  <_  L ) )
109simplbi2 625 . . . . . . . . . . . . . . . . . . . 20  |-  ( L  e.  ZZ  ->  (
0  <_  L  ->  L  e.  NN0 ) )
115, 8, 10sylsyld 56 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( 0  <_  K  /\  K  <_  L
)  ->  L  e.  NN0 ) )
1211expd 436 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( 0  <_  K  ->  ( K  <_  L  ->  L  e.  NN0 )
) )
1312impancom 440 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  ZZ  /\  0  <_  K )  -> 
( L  e.  ZZ  ->  ( K  <_  L  ->  L  e.  NN0 )
) )
144, 13sylbi 195 . . . . . . . . . . . . . . . 16  |-  ( K  e.  NN0  ->  ( L  e.  ZZ  ->  ( K  <_  L  ->  L  e.  NN0 ) ) )
1514com13 80 . . . . . . . . . . . . . . 15  |-  ( K  <_  L  ->  ( L  e.  ZZ  ->  ( K  e.  NN0  ->  L  e.  NN0 ) ) )
1615adantr 465 . . . . . . . . . . . . . 14  |-  ( ( K  <_  L  /\  L  <_  N )  -> 
( L  e.  ZZ  ->  ( K  e.  NN0  ->  L  e.  NN0 )
) )
1716com12 31 . . . . . . . . . . . . 13  |-  ( L  e.  ZZ  ->  (
( K  <_  L  /\  L  <_  N )  ->  ( K  e. 
NN0  ->  L  e.  NN0 ) ) )
18173ad2ant3 1020 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  ->  (
( K  <_  L  /\  L  <_  N )  ->  ( K  e. 
NN0  ->  L  e.  NN0 ) ) )
1918imp 429 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  ( K  e.  NN0  ->  L  e.  NN0 ) )
2019com12 31 . . . . . . . . . 10  |-  ( K  e.  NN0  ->  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  L  e.  NN0 ) )
21203ad2ant1 1018 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  (
( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  L  e.  NN0 ) )
2221impcom 430 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  L  e.  NN0 )
23 simplrl 761 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  K  <_  L
)
243, 22, 233jca 1177 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  /\  ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N ) )  ->  ( K  e. 
NN0  /\  L  e.  NN0 
/\  K  <_  L
) )
2524ex 434 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  L  e.  ZZ )  /\  ( K  <_  L  /\  L  <_  N ) )  ->  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
262, 25sylbi 195 . . . . 5  |-  ( L  e.  ( K ... N )  ->  (
( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  -> 
( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
2726com12 31 . . . 4  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  ->  ( L  e.  ( K ... N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
281, 27sylbi 195 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( L  e.  ( K ... N )  ->  ( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) ) )
2928imp 429 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  -> 
( K  e.  NN0  /\  L  e.  NN0  /\  K  <_  L ) )
30 elfz2nn0 11777 . 2  |-  ( K  e.  ( 0 ... L )  <->  ( K  e.  NN0  /\  L  e. 
NN0  /\  K  <_  L ) )
3129, 30sylibr 212 1  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  K  e.  ( 0 ... L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    e. wcel 1804   class class class wbr 4437  (class class class)co 6281   0cc0 9495    <_ cle 9632   NN0cn0 10801   ZZcz 10870   ...cfz 11681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-n0 10802  df-z 10871  df-uz 11091  df-fz 11682
This theorem is referenced by:  swrdswrd  12664
  Copyright terms: Public domain W3C validator