MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm3 Structured version   Unicode version

Theorem elfm3 20536
Description: An alternate formulation of elementhood in a mapping filter that requires  F to be onto. (Contributed by Jeff Hankins, 1-Oct-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l  |-  L  =  ( Y filGen B )
Assertion
Ref Expression
elfm3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Distinct variable groups:    x, B    x, F    x, X    x, A    x, L    x, Y

Proof of Theorem elfm3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foima 5708 . . . 4  |-  ( F : Y -onto-> X  -> 
( F " Y
)  =  X )
21adantl 464 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  =  X )
3 fofun 5704 . . . 4  |-  ( F : Y -onto-> X  ->  Fun  F )
4 elfvdm 5800 . . . 4  |-  ( B  e.  ( fBas `  Y
)  ->  Y  e.  dom  fBas )
5 funimaexg 5573 . . . 4  |-  ( ( Fun  F  /\  Y  e.  dom  fBas )  ->  ( F " Y )  e. 
_V )
63, 4, 5syl2anr 476 . . 3  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( F " Y )  e. 
_V )
72, 6eqeltrrd 2471 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  X  e.  _V )
8 fof 5703 . . . . 5  |-  ( F : Y -onto-> X  ->  F : Y --> X )
9 elfm2.l . . . . . 6  |-  L  =  ( Y filGen B )
109elfm2 20534 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( X  FilMap  F ) `
 B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
118, 10syl3an3 1261 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A
) ) )
12 fgcl 20464 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
139, 12syl5eqel 2474 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  L  e.  ( Fil `  Y ) )
14133ad2ant2 1016 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  L  e.  ( Fil `  Y
) )
1514ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  L  e.  ( Fil `  Y ) )
16 simprl 754 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  e.  L )
17 cnvimass 5269 . . . . . . . . . . . 12  |-  ( `' F " A ) 
C_  dom  F
18 fofn 5705 . . . . . . . . . . . . 13  |-  ( F : Y -onto-> X  ->  F  Fn  Y )
19 fndm 5588 . . . . . . . . . . . . 13  |-  ( F  Fn  Y  ->  dom  F  =  Y )
2018, 19syl 16 . . . . . . . . . . . 12  |-  ( F : Y -onto-> X  ->  dom  F  =  Y )
2117, 20syl5sseq 3465 . . . . . . . . . . 11  |-  ( F : Y -onto-> X  -> 
( `' F " A )  C_  Y
)
22213ad2ant3 1017 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( `' F " A ) 
C_  Y )
2322ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  C_  Y
)
2433ad2ant3 1017 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  Fun  F )
2524ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  Fun  F )
269eleq2i 2460 . . . . . . . . . . . . . . 15  |-  ( y  e.  L  <->  y  e.  ( Y filGen B ) )
27 elfg 20457 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen B )  <-> 
( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
28273ad2ant2 1016 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
2928adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  ( Y
filGen B )  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3026, 29syl5bb 257 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  (
y  e.  L  <->  ( y  C_  Y  /\  E. z  e.  B  z  C_  y ) ) )
3130simprbda 621 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_  Y )
32 sseq2 3439 . . . . . . . . . . . . . . . . 17  |-  ( dom 
F  =  Y  -> 
( y  C_  dom  F  <-> 
y  C_  Y )
)
3332biimpar 483 . . . . . . . . . . . . . . . 16  |-  ( ( dom  F  =  Y  /\  y  C_  Y
)  ->  y  C_  dom  F )
3420, 33sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( F : Y -onto-> X  /\  y  C_  Y )  ->  y  C_  dom  F )
35343ad2antl3 1158 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3635adantlr 712 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  C_  Y )  ->  y  C_ 
dom  F )
3731, 36syldan 468 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  y  C_ 
dom  F )
38 funimass3 5905 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  y  C_ 
dom  F )  -> 
( ( F "
y )  C_  A  <->  y 
C_  ( `' F " A ) ) )
3925, 37, 38syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  <->  y  C_  ( `' F " A ) ) )
4039biimpd 207 . . . . . . . . . 10  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  y  e.  L )  ->  (
( F " y
)  C_  A  ->  y 
C_  ( `' F " A ) ) )
4140impr 617 . . . . . . . . 9  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
y  C_  ( `' F " A ) )
42 filss 20439 . . . . . . . . 9  |-  ( ( L  e.  ( Fil `  Y )  /\  (
y  e.  L  /\  ( `' F " A ) 
C_  Y  /\  y  C_  ( `' F " A ) ) )  ->  ( `' F " A )  e.  L
)
4315, 16, 23, 41, 42syl13anc 1228 . . . . . . . 8  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  -> 
( `' F " A )  e.  L
)
44 foimacnv 5741 . . . . . . . . . . 11  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  ( F "
( `' F " A ) )  =  A )
4544eqcomd 2390 . . . . . . . . . 10  |-  ( ( F : Y -onto-> X  /\  A  C_  X )  ->  A  =  ( F " ( `' F " A ) ) )
46453ad2antl3 1158 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  A  =  ( F "
( `' F " A ) ) )
4746adantr 463 . . . . . . . 8  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  A  =  ( F " ( `' F " A ) ) )
48 imaeq2 5245 . . . . . . . . . 10  |-  ( x  =  ( `' F " A )  ->  ( F " x )  =  ( F " ( `' F " A ) ) )
4948eqeq2d 2396 . . . . . . . . 9  |-  ( x  =  ( `' F " A )  ->  ( A  =  ( F " x )  <->  A  =  ( F " ( `' F " A ) ) ) )
5049rspcev 3135 . . . . . . . 8  |-  ( ( ( `' F " A )  e.  L  /\  A  =  ( F " ( `' F " A ) ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5143, 47, 50syl2anc 659 . . . . . . 7  |-  ( ( ( ( X  e. 
_V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X
)  /\  A  C_  X
)  /\  ( y  e.  L  /\  ( F " y )  C_  A ) )  ->  E. x  e.  L  A  =  ( F " x ) )
5251rexlimdvaa 2875 . . . . . 6  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  A  C_  X )  ->  ( E. y  e.  L  ( F " y ) 
C_  A  ->  E. x  e.  L  A  =  ( F " x ) ) )
5352expimpd 601 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  ->  E. x  e.  L  A  =  ( F " x ) ) )
54 simprr 755 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  =  ( F " x ) )
55 imassrn 5260 . . . . . . . . 9  |-  ( F
" x )  C_  ran  F
56 forn 5706 . . . . . . . . . . 11  |-  ( F : Y -onto-> X  ->  ran  F  =  X )
57563ad2ant3 1017 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ran  F  =  X )
5857adantr 463 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ran  F  =  X )
5955, 58syl5sseq 3465 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( F "
x )  C_  X
)
6054, 59eqsstrd 3451 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  A  C_  X
)
61 eqimss2 3470 . . . . . . . . 9  |-  ( A  =  ( F "
x )  ->  ( F " x )  C_  A )
62 imaeq2 5245 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F " y )  =  ( F " x
) )
6362sseq1d 3444 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( F " y
)  C_  A  <->  ( F " x )  C_  A
) )
6463rspcev 3135 . . . . . . . . 9  |-  ( ( x  e.  L  /\  ( F " x ) 
C_  A )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6561, 64sylan2 472 . . . . . . . 8  |-  ( ( x  e.  L  /\  A  =  ( F " x ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6665adantl 464 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  E. y  e.  L  ( F " y ) 
C_  A )
6760, 66jca 530 . . . . . 6  |-  ( ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  /\  (
x  e.  L  /\  A  =  ( F " x ) ) )  ->  ( A  C_  X  /\  E. y  e.  L  ( F "
y )  C_  A
) )
6867rexlimdvaa 2875 . . . . 5  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( E. x  e.  L  A  =  ( F " x )  ->  ( A  C_  X  /\  E. y  e.  L  ( F " y )  C_  A ) ) )
6953, 68impbid 191 . . . 4  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  (
( A  C_  X  /\  E. y  e.  L  ( F " y ) 
C_  A )  <->  E. x  e.  L  A  =  ( F " x ) ) )
7011, 69bitrd 253 . . 3  |-  ( ( X  e.  _V  /\  B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
71703coml 1201 . 2  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X  /\  X  e. 
_V )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
727, 71mpd3an3 1323 1  |-  ( ( B  e.  ( fBas `  Y )  /\  F : Y -onto-> X )  ->  ( A  e.  ( ( X  FilMap  F ) `  B )  <->  E. x  e.  L  A  =  ( F " x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   E.wrex 2733   _Vcvv 3034    C_ wss 3389   `'ccnv 4912   dom cdm 4913   ran crn 4914   "cima 4916   Fun wfun 5490    Fn wfn 5491   -->wf 5492   -onto->wfo 5494   ` cfv 5496  (class class class)co 6196   fBascfbas 18519   filGencfg 18520   Filcfil 20431    FilMap cfm 20519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-fbas 18529  df-fg 18530  df-fil 20432  df-fm 20524
This theorem is referenced by:  fmid  20546
  Copyright terms: Public domain W3C validator