MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfir Structured version   Visualization version   Unicode version

Theorem elfir 7947
Description: Sufficient condition for an element of  ( fi `  B ). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )

Proof of Theorem elfir
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 1030 . . . . . 6  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  C_  B )
2 elpw2g 4564 . . . . . 6  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2syl5ibr 229 . . . . 5  |-  ( B  e.  V  ->  (
( A  C_  B  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  A  e.  ~P B ) )
43imp 436 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ~P B
)
5 simpr3 1038 . . . 4  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  Fin )
64, 5elind 3609 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  A  e.  ( ~P B  i^i  Fin ) )
7 eqid 2471 . . 3  |-  |^| A  =  |^| A
8 inteq 4229 . . . . 5  |-  ( x  =  A  ->  |^| x  =  |^| A )
98eqeq2d 2481 . . . 4  |-  ( x  =  A  ->  ( |^| A  =  |^| x  <->  |^| A  =  |^| A
) )
109rspcev 3136 . . 3  |-  ( ( A  e.  ( ~P B  i^i  Fin )  /\  |^| A  =  |^| A )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  = 
|^| x )
116, 7, 10sylancl 675 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
)
12 simp2 1031 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  A  =/=  (/) )
13 intex 4557 . . . 4  |-  ( A  =/=  (/)  <->  |^| A  e.  _V )
1412, 13sylib 201 . . 3  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  |^| A  e.  _V )
15 id 22 . . 3  |-  ( B  e.  V  ->  B  e.  V )
16 elfi 7945 . . 3  |-  ( (
|^| A  e.  _V  /\  B  e.  V )  ->  ( |^| A  e.  ( fi `  B
)  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x ) )
1714, 15, 16syl2anr 486 . 2  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  -> 
( |^| A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) |^| A  =  |^| x
) )
1811, 17mpbird 240 1  |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   |^|cint 4226   ` cfv 5589   Fincfn 7587   ficfi 7942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-fi 7943
This theorem is referenced by:  intrnfi  7948  ssfii  7951  elfiun  7962  ptbasfi  20673  fbssint  20931  filintn0  20954  alexsublem  21137  ispisys2  29049
  Copyright terms: Public domain W3C validator