MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi2 Structured version   Visualization version   Unicode version

Theorem elfi2 7946
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
elfi2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Distinct variable groups:    x, A    x, B    x, V

Proof of Theorem elfi2
StepHypRef Expression
1 elex 3040 . . 3  |-  ( A  e.  ( fi `  B )  ->  A  e.  _V )
21a1i 11 . 2  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  ->  A  e.  _V ) )
3 simpr 468 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  =  |^| x )
4 eldifsni 4089 . . . . . . 7  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  ->  x  =/=  (/) )
54adantr 472 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  x  =/=  (/) )
6 intex 4557 . . . . . 6  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
75, 6sylib 201 . . . . 5  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
83, 7eqeltrd 2549 . . . 4  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  ->  A  e.  _V )
98rexlimiva 2868 . . 3  |-  ( E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V )
109a1i 11 . 2  |-  ( B  e.  V  ->  ( E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x  ->  A  e.  _V ) )
11 elfi 7945 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
12 vprc 4534 . . . . . . . . . . 11  |-  -.  _V  e.  _V
13 elsni 3985 . . . . . . . . . . . . . 14  |-  ( x  e.  { (/) }  ->  x  =  (/) )
1413inteqd 4231 . . . . . . . . . . . . 13  |-  ( x  e.  { (/) }  ->  |^| x  =  |^| (/) )
15 int0 4240 . . . . . . . . . . . . 13  |-  |^| (/)  =  _V
1614, 15syl6eq 2521 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  |^| x  =  _V )
1716eleq1d 2533 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  (
|^| x  e.  _V  <->  _V  e.  _V ) )
1812, 17mtbiri 310 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  -. 
|^| x  e.  _V )
19 simpr 468 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  =  |^| x )
20 simpll 768 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  A  e.  _V )
2119, 20eqeltrrd 2550 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  |^| x  e.  _V )
2218, 21nsyl3 123 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  -.  x  e.  { (/) } )
2322biantrud 515 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/)
} ) ) )
24 eldif 3400 . . . . . . . 8  |-  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( x  e.  ( ~P B  i^i  Fin )  /\  -.  x  e.  { (/) } ) )
2523, 24syl6bbr 271 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  A  =  |^| x )  ->  (
x  e.  ( ~P B  i^i  Fin )  <->  x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) ) )
2625pm5.32da 653 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( A  = 
|^| x  /\  x  e.  ( ~P B  i^i  Fin ) )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) ) )
27 ancom 457 . . . . . 6  |-  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ~P B  i^i  Fin ) ) )
28 ancom 457 . . . . . 6  |-  ( ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  A  =  |^| x )  <->  ( A  =  |^| x  /\  x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) ) )
2926, 27, 283bitr4g 296 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( ( x  e.  ( ~P B  i^i  Fin )  /\  A  = 
|^| x )  <->  ( x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} )  /\  A  =  |^| x ) ) )
3029rexbidv2 2888 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x 
<->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3111, 30bitrd 261 . . 3  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
3231expcom 442 . 2  |-  ( B  e.  V  ->  ( A  e.  _V  ->  ( A  e.  ( fi
`  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) ) )
332, 10, 32pm5.21ndd 361 1  |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) A  = 
|^| x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757   _Vcvv 3031    \ cdif 3387    i^i cin 3389   (/)c0 3722   ~Pcpw 3942   {csn 3959   |^|cint 4226   ` cfv 5589   Fincfn 7587   ficfi 7942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-fi 7943
This theorem is referenced by:  fifo  7964  firest  15409  alexsublem  21137  ispisys2  29049
  Copyright terms: Public domain W3C validator