Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elex2VD Structured version   Unicode version

Theorem elex2VD 33781
Description: Virtual deduction proof of elex2 3121. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elex2VD  |-  ( A  e.  B  ->  E. x  x  e.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem elex2VD
StepHypRef Expression
1 idn1 33494 . . . . . 6  |-  (. A  e.  B  ->.  A  e.  B ).
2 idn2 33542 . . . . . 6  |-  (. A  e.  B ,. x  =  A  ->.  x  =  A ).
3 eleq1a 2540 . . . . . 6  |-  ( A  e.  B  ->  (
x  =  A  ->  x  e.  B )
)
41, 2, 3e12 33664 . . . . 5  |-  (. A  e.  B ,. x  =  A  ->.  x  e.  B ).
54in2 33534 . . . 4  |-  (. A  e.  B  ->.  ( x  =  A  ->  x  e.  B ) ).
65gen11 33545 . . 3  |-  (. A  e.  B  ->.  A. x ( x  =  A  ->  x  e.  B ) ).
7 elisset 3120 . . . 4  |-  ( A  e.  B  ->  E. x  x  =  A )
81, 7e1a 33556 . . 3  |-  (. A  e.  B  ->.  E. x  x  =  A ).
9 exim 1655 . . 3  |-  ( A. x ( x  =  A  ->  x  e.  B )  ->  ( E. x  x  =  A  ->  E. x  x  e.  B ) )
106, 8, 9e11 33617 . 2  |-  (. A  e.  B  ->.  E. x  x  e.  B ).
1110in1 33491 1  |-  ( A  e.  B  ->  E. x  x  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-12 1855  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-vd1 33490  df-vd2 33498
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator