MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elee Structured version   Visualization version   Unicode version

Theorem elee 24973
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 
N space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
elee  |-  ( N  e.  NN  ->  ( A  e.  ( EE `  N )  <->  A :
( 1 ... N
) --> RR ) )

Proof of Theorem elee
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 oveq2 6323 . . . . 5  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
21oveq2d 6331 . . . 4  |-  ( n  =  N  ->  ( RR  ^m  ( 1 ... n ) )  =  ( RR  ^m  (
1 ... N ) ) )
3 df-ee 24970 . . . 4  |-  EE  =  ( n  e.  NN  |->  ( RR  ^m  (
1 ... n ) ) )
4 ovex 6343 . . . 4  |-  ( RR 
^m  ( 1 ... N ) )  e. 
_V
52, 3, 4fvmpt 5971 . . 3  |-  ( N  e.  NN  ->  ( EE `  N )  =  ( RR  ^m  (
1 ... N ) ) )
65eleq2d 2525 . 2  |-  ( N  e.  NN  ->  ( A  e.  ( EE `  N )  <->  A  e.  ( RR  ^m  (
1 ... N ) ) ) )
7 reex 9656 . . 3  |-  RR  e.  _V
8 ovex 6343 . . 3  |-  ( 1 ... N )  e. 
_V
97, 8elmap 7526 . 2  |-  ( A  e.  ( RR  ^m  ( 1 ... N
) )  <->  A :
( 1 ... N
) --> RR )
106, 9syl6bb 269 1  |-  ( N  e.  NN  ->  ( A  e.  ( EE `  N )  <->  A :
( 1 ... N
) --> RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    = wceq 1455    e. wcel 1898   -->wf 5597   ` cfv 5601  (class class class)co 6315    ^m cmap 7498   RRcr 9564   1c1 9566   NNcn 10637   ...cfz 11813   EEcee 24967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-map 7500  df-ee 24970
This theorem is referenced by:  mptelee  24974  eleei  24976  axlowdimlem5  25025  axlowdimlem7  25027  axlowdimlem10  25030  axlowdimlem14  25034  axlowdim1  25038
  Copyright terms: Public domain W3C validator