MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldv Structured version   Unicode version

Theorem eldv 21373
Description: The differentiable predicate. A function  F is differentiable at  B with derivative  C iff  F is defined in a neighborhood of  B and the difference quotient has limit  C at  B. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( TopOpen ` fld )
eldv.g  |-  G  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
eldv.s  |-  ( ph  ->  S  C_  CC )
eldv.f  |-  ( ph  ->  F : A --> CC )
eldv.a  |-  ( ph  ->  A  C_  S )
Assertion
Ref Expression
eldv  |-  ( ph  ->  ( B ( S  _D  F ) C  <-> 
( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
Distinct variable groups:    z, A    z, B    z, F    z, C    z, K    z, S
Allowed substitution hints:    ph( z)    T( z)    G( z)

Proof of Theorem eldv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldv.s . . . . 5  |-  ( ph  ->  S  C_  CC )
2 eldv.f . . . . 5  |-  ( ph  ->  F : A --> CC )
3 eldv.a . . . . 5  |-  ( ph  ->  A  C_  S )
4 dvval.t . . . . . 6  |-  T  =  ( Kt  S )
5 dvval.k . . . . . 6  |-  K  =  ( TopOpen ` fld )
64, 5dvfval 21372 . . . . 5  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
71, 2, 3, 6syl3anc 1218 . . . 4  |-  ( ph  ->  ( ( S  _D  F )  =  U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  /\  ( S  _D  F )  C_  (
( ( int `  T
) `  A )  X.  CC ) ) )
87simpld 459 . . 3  |-  ( ph  ->  ( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
98eleq2d 2510 . 2  |-  ( ph  ->  ( <. B ,  C >.  e.  ( S  _D  F )  <->  <. B ,  C >.  e.  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) ) )
10 df-br 4293 . . 3  |-  ( B ( S  _D  F
) C  <->  <. B ,  C >.  e.  ( S  _D  F ) )
1110bicomi 202 . 2  |-  ( <. B ,  C >.  e.  ( S  _D  F
)  <->  B ( S  _D  F ) C )
12 sneq 3887 . . . . . . 7  |-  ( x  =  B  ->  { x }  =  { B } )
1312difeq2d 3474 . . . . . 6  |-  ( x  =  B  ->  ( A  \  { x }
)  =  ( A 
\  { B }
) )
14 fveq2 5691 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
1514oveq2d 6107 . . . . . . 7  |-  ( x  =  B  ->  (
( F `  z
)  -  ( F `
 x ) )  =  ( ( F `
 z )  -  ( F `  B ) ) )
16 oveq2 6099 . . . . . . 7  |-  ( x  =  B  ->  (
z  -  x )  =  ( z  -  B ) )
1715, 16oveq12d 6109 . . . . . 6  |-  ( x  =  B  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )
1813, 17mpteq12dv 4370 . . . . 5  |-  ( x  =  B  ->  (
z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) )
19 eldv.g . . . . 5  |-  G  =  ( z  e.  ( A  \  { B } )  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
2018, 19syl6eqr 2493 . . . 4  |-  ( x  =  B  ->  (
z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  G )
21 id 22 . . . 4  |-  ( x  =  B  ->  x  =  B )
2220, 21oveq12d 6109 . . 3  |-  ( x  =  B  ->  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  =  ( G lim CC  B
) )
2322opeliunxp2 4978 . 2  |-  ( <. B ,  C >.  e. 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  <->  ( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) )
249, 11, 233bitr3g 287 1  |-  ( ph  ->  ( B ( S  _D  F ) C  <-> 
( B  e.  ( ( int `  T
) `  A )  /\  C  e.  ( G lim CC  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3325    C_ wss 3328   {csn 3877   <.cop 3883   U_ciun 4171   class class class wbr 4292    e. cmpt 4350    X. cxp 4838   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280    - cmin 9595    / cdiv 9993   ↾t crest 14359   TopOpenctopn 14360  ℂfldccnfld 17818   intcnt 18621   lim CC climc 21337    _D cdv 21338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-fz 11438  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-plusg 14251  df-mulr 14252  df-starv 14253  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-rest 14361  df-topn 14362  df-topgen 14382  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cnp 18832  df-xms 19895  df-ms 19896  df-limc 21341  df-dv 21342
This theorem is referenced by:  dvcl  21374  perfdvf  21378  dvreslem  21384  dvres2lem  21385  dvidlem  21390  dvcnp  21393  dvcnp2  21394  dvaddbr  21412  dvmulbr  21413  dvcobr  21420  dvcjbr  21423  dvrec  21429  dvcnvlem  21448  dveflem  21451  dvferm1  21457  dvferm2  21459  ftc1  21514  taylthlem1  21838  ulmdvlem3  21867  ftc1cnnc  28466
  Copyright terms: Public domain W3C validator