Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmgm Structured version   Unicode version

Theorem eldmgm 26960
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  -u A  e.  NN0 ) )

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3333 . 2  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  A  e.  ( ZZ  \  NN ) ) )
2 eldif 3333 . . . . 5  |-  ( A  e.  ( ZZ  \  NN )  <->  ( A  e.  ZZ  /\  -.  A  e.  NN ) )
3 elznn 10654 . . . . . . . 8  |-  ( A  e.  ZZ  <->  ( A  e.  RR  /\  ( A  e.  NN  \/  -u A  e.  NN0 ) ) )
43simprbi 464 . . . . . . 7  |-  ( A  e.  ZZ  ->  ( A  e.  NN  \/  -u A  e.  NN0 )
)
54orcanai 904 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  A  e.  NN )  ->  -u A  e.  NN0 )
6 negneg 9651 . . . . . . . . . 10  |-  ( A  e.  CC  ->  -u -u A  =  A )
76adantr 465 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  -> 
-u -u A  =  A )
8 nn0negz 10675 . . . . . . . . . 10  |-  ( -u A  e.  NN0  ->  -u -u A  e.  ZZ )
98adantl 466 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  -> 
-u -u A  e.  ZZ )
107, 9eqeltrrd 2513 . . . . . . . 8  |-  ( ( A  e.  CC  /\  -u A  e.  NN0 )  ->  A  e.  ZZ )
1110ex 434 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  A  e.  ZZ ) )
12 nngt0 10343 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  0  <  A )
13 nnre 10321 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
1413lt0neg2d 9902 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
0  <  A  <->  -u A  <  0 ) )
1512, 14mpbid 210 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -u A  <  0 )
1613renegcld 9767 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  -u A  e.  RR )
17 0re 9378 . . . . . . . . . . 11  |-  0  e.  RR
18 ltnle 9446 . . . . . . . . . . 11  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  ( -u A  <  0  <->  -.  0  <_  -u A ) )
1916, 17, 18sylancl 662 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( -u A  <  0  <->  -.  0  <_  -u A ) )
2015, 19mpbid 210 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  0  <_  -u A )
21 nn0ge0 10597 . . . . . . . . 9  |-  ( -u A  e.  NN0  ->  0  <_ 
-u A )
2220, 21nsyl3 119 . . . . . . . 8  |-  ( -u A  e.  NN0  ->  -.  A  e.  NN )
2322a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  -.  A  e.  NN ) )
2411, 23jcad 533 . . . . . 6  |-  ( A  e.  CC  ->  ( -u A  e.  NN0  ->  ( A  e.  ZZ  /\  -.  A  e.  NN ) ) )
255, 24impbid2 204 . . . . 5  |-  ( A  e.  CC  ->  (
( A  e.  ZZ  /\ 
-.  A  e.  NN ) 
<-> 
-u A  e.  NN0 ) )
262, 25syl5bb 257 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  ( ZZ  \  NN )  <->  -u A  e. 
NN0 ) )
2726notbid 294 . . 3  |-  ( A  e.  CC  ->  ( -.  A  e.  ( ZZ  \  NN )  <->  -.  -u A  e.  NN0 ) )
2827pm5.32i 637 . 2  |-  ( ( A  e.  CC  /\  -.  A  e.  ( ZZ  \  NN ) )  <-> 
( A  e.  CC  /\ 
-.  -u A  e.  NN0 ) )
291, 28bitri 249 1  |-  ( A  e.  ( CC  \ 
( ZZ  \  NN ) )  <->  ( A  e.  CC  /\  -.  -u A  e.  NN0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3320   class class class wbr 4287   CCcc 9272   RRcr 9273   0cc0 9274    < clt 9410    <_ cle 9411   -ucneg 9588   NNcn 10314   NN0cn0 10571   ZZcz 10638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639
This theorem is referenced by:  dmgmaddn0  26961  dmlogdmgm  26962  dmgmaddnn0  26965  lgamgulmlem1  26967  lgamucov  26976
  Copyright terms: Public domain W3C validator