Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophb Structured version   Unicode version

Theorem eldiophb 29263
Description: Initial expression of Diophantine property of a set. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
eldiophb  |-  ( D  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) D  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
Distinct variable groups:    D, k, p    k, N, p, t, u
Allowed substitution hints:    D( u, t)

Proof of Theorem eldiophb
Dummy variables  n  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dioph 29262 . . . 4  |- Dioph  =  ( n  e.  NN0  |->  ran  (
k  e.  ( ZZ>= `  n ) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 ) } ) )
21dmmptss 5445 . . 3  |-  dom Dioph  C_  NN0
3 elfvdm 5828 . . 3  |-  ( D  e.  (Dioph `  N
)  ->  N  e.  dom Dioph )
42, 3sseldi 3465 . 2  |-  ( D  e.  (Dioph `  N
)  ->  N  e.  NN0 )
5 fveq2 5802 . . . . . . 7  |-  ( n  =  N  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  N )
)
6 eqidd 2455 . . . . . . 7  |-  ( n  =  N  ->  (mzPoly `  ( 1 ... k
) )  =  (mzPoly `  ( 1 ... k
) ) )
7 oveq2 6211 . . . . . . . . . . . 12  |-  ( n  =  N  ->  (
1 ... n )  =  ( 1 ... N
) )
87reseq2d 5221 . . . . . . . . . . 11  |-  ( n  =  N  ->  (
u  |`  ( 1 ... n ) )  =  ( u  |`  (
1 ... N ) ) )
98eqeq2d 2468 . . . . . . . . . 10  |-  ( n  =  N  ->  (
t  =  ( u  |`  ( 1 ... n
) )  <->  t  =  ( u  |`  ( 1 ... N ) ) ) )
109anbi1d 704 . . . . . . . . 9  |-  ( n  =  N  ->  (
( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
1110rexbidv 2868 . . . . . . . 8  |-  ( n  =  N  ->  ( E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n
) )  /\  (
p `  u )  =  0 )  <->  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
1211abbidv 2590 . . . . . . 7  |-  ( n  =  N  ->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
135, 6, 12mpt2eq123dv 6260 . . . . . 6  |-  ( n  =  N  ->  (
k  e.  ( ZZ>= `  n ) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 ) } )  =  ( k  e.  (
ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
1413rneqd 5178 . . . . 5  |-  ( n  =  N  ->  ran  ( k  e.  (
ZZ>= `  n ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 ) } )  =  ran  ( k  e.  ( ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
15 ovex 6228 . . . . . . 7  |-  ( NN0 
^m  ( 1 ... N ) )  e. 
_V
1615pwex 4586 . . . . . 6  |-  ~P ( NN0  ^m  ( 1 ... N ) )  e. 
_V
17 eqid 2454 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  N
) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  =  ( k  e.  (
ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )
1817rnmpt2 6313 . . . . . . 7  |-  ran  (
k  e.  ( ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  =  { d  |  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k ) ) d  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } }
19 elmapi 7347 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( NN0  ^m  ( 1 ... k
) )  ->  u : ( 1 ... k ) --> NN0 )
20 fzss2 11618 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... k
) )
21 fssres 5689 . . . . . . . . . . . . . . . . 17  |-  ( ( u : ( 1 ... k ) --> NN0 
/\  ( 1 ... N )  C_  (
1 ... k ) )  ->  ( u  |`  ( 1 ... N
) ) : ( 1 ... N ) --> NN0 )
2219, 20, 21syl2anr 478 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( ZZ>= `  N )  /\  u  e.  ( NN0  ^m  (
1 ... k ) ) )  ->  ( u  |`  ( 1 ... N
) ) : ( 1 ... N ) --> NN0 )
23 nn0ex 10699 . . . . . . . . . . . . . . . . 17  |-  NN0  e.  _V
24 ovex 6228 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... N )  e. 
_V
2523, 24elmap 7354 . . . . . . . . . . . . . . . 16  |-  ( ( u  |`  ( 1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) )  <->  ( u  |`  ( 1 ... N
) ) : ( 1 ... N ) --> NN0 )
2622, 25sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( ZZ>= `  N )  /\  u  e.  ( NN0  ^m  (
1 ... k ) ) )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
27 eleq1 2526 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  e.  ( NN0 
^m  ( 1 ... N ) )  <->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) ) )
2827adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  <-> 
( u  |`  (
1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) ) ) )
2926, 28syl5ibrcom 222 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ( ZZ>= `  N )  /\  u  e.  ( NN0  ^m  (
1 ... k ) ) )  ->  ( (
t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
t  e.  ( NN0 
^m  ( 1 ... N ) ) ) )
3029rexlimdva 2947 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
t  e.  ( NN0 
^m  ( 1 ... N ) ) ) )
3130abssdv 3537 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  N
)  ->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  C_  ( NN0  ^m  ( 1 ... N ) ) )
3215elpw2 4567 . . . . . . . . . . . 12  |-  ( { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  ~P ( NN0  ^m  ( 1 ... N ) )  <->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } 
C_  ( NN0  ^m  ( 1 ... N
) ) )
3331, 32sylibr 212 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  N
)  ->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  ~P ( NN0  ^m  ( 1 ... N ) ) )
34 eleq1 2526 . . . . . . . . . . 11  |-  ( d  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  ->  (
d  e.  ~P ( NN0  ^m  ( 1 ... N ) )  <->  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  ~P ( NN0  ^m  ( 1 ... N ) ) ) )
3533, 34syl5ibrcom 222 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( d  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) }  ->  d  e.  ~P ( NN0  ^m  ( 1 ... N ) ) ) )
3635rexlimdvw 2950 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  N
)  ->  ( E. p  e.  (mzPoly `  (
1 ... k ) ) d  =  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  ->  d  e.  ~P ( NN0  ^m  ( 1 ... N
) ) ) )
3736rexlimiv 2941 . . . . . . . 8  |-  ( E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k ) ) d  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  ->  d  e.  ~P ( NN0  ^m  ( 1 ... N
) ) )
3837abssi 3538 . . . . . . 7  |-  { d  |  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) d  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } }  C_  ~P ( NN0  ^m  ( 1 ... N ) )
3918, 38eqsstri 3497 . . . . . 6  |-  ran  (
k  e.  ( ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  C_  ~P ( NN0  ^m  (
1 ... N ) )
4016, 39ssexi 4548 . . . . 5  |-  ran  (
k  e.  ( ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  e. 
_V
4114, 1, 40fvmpt 5886 . . . 4  |-  ( N  e.  NN0  ->  (Dioph `  N )  =  ran  ( k  e.  (
ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
4241eleq2d 2524 . . 3  |-  ( N  e.  NN0  ->  ( D  e.  (Dioph `  N
)  <->  D  e.  ran  ( k  e.  (
ZZ>= `  N ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } ) ) )
43 ovex 6228 . . . . . 6  |-  ( NN0 
^m  ( 1 ... k ) )  e. 
_V
4443abrexex 6664 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) t  =  ( u  |`  ( 1 ... N
) ) }  e.  _V
45 simpl 457 . . . . . . 7  |-  ( ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
t  =  ( u  |`  ( 1 ... N
) ) )
4645reximi 2929 . . . . . 6  |-  ( E. u  e.  ( NN0 
^m  ( 1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( 1 ... k ) ) t  =  ( u  |`  ( 1 ... N
) ) )
4746ss2abi 3535 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  C_  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) t  =  ( u  |`  ( 1 ... N
) ) }
4844, 47ssexi 4548 . . . 4  |-  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  e.  _V
4917, 48elrnmpt2 6316 . . 3  |-  ( D  e.  ran  ( k  e.  ( ZZ>= `  N
) ,  p  e.  (mzPoly `  ( 1 ... k ) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) } )  <->  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) D  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } )
5042, 49syl6bb 261 . 2  |-  ( N  e.  NN0  ->  ( D  e.  (Dioph `  N
)  <->  E. k  e.  (
ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) D  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
514, 50biadan2 642 1  |-  ( D  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. k  e.  ( ZZ>= `  N ) E. p  e.  (mzPoly `  ( 1 ... k
) ) D  =  { t  |  E. u  e.  ( NN0  ^m  ( 1 ... k
) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2439   E.wrex 2800    C_ wss 3439   ~Pcpw 3971   dom cdm 4951   ran crn 4952    |` cres 4953   -->wf 5525   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205    ^m cmap 7327   0cc0 9396   1c1 9397   NN0cn0 10693   ZZ>=cuz 10975   ...cfz 11557  mzPolycmzp 29226  Diophcdioph 29261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-i2m1 9464  ax-1ne0 9465  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-fz 11558  df-dioph 29262
This theorem is referenced by:  eldioph  29264  eldioph2b  29269  eldiophelnn0  29270
  Copyright terms: Public domain W3C validator