Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   Unicode version

Theorem eldioph4b 35725
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a  |-  W  e. 
_V
eldioph4b.b  |-  -.  W  e.  Fin
eldioph4b.c  |-  ( W  i^i  NN )  =  (/)
Assertion
Ref Expression
eldioph4b  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Distinct variable groups:    W, p, t, w    S, p, t, w    N, p, t, w

Proof of Theorem eldioph4b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 35677 . 2  |-  ( S  e.  (Dioph `  N
)  ->  N  e.  NN0 )
2 eldioph4b.a . . . . . 6  |-  W  e. 
_V
3 ovex 6336 . . . . . 6  |-  ( 1 ... N )  e. 
_V
42, 3unex 6608 . . . . 5  |-  ( W  u.  ( 1 ... N ) )  e. 
_V
54jctr 551 . . . 4  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  ( W  u.  ( 1 ... N ) )  e.  _V ) )
6 eldioph4b.b . . . . . . 7  |-  -.  W  e.  Fin
76intnanr 929 . . . . . 6  |-  -.  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin )
8 unfir 7857 . . . . . 6  |-  ( ( W  u.  ( 1 ... N ) )  e.  Fin  ->  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin ) )
97, 8mto 181 . . . . 5  |-  -.  ( W  u.  ( 1 ... N ) )  e.  Fin
10 ssun2 3589 . . . . 5  |-  ( 1 ... N )  C_  ( W  u.  (
1 ... N ) )
119, 10pm3.2i 462 . . . 4  |-  ( -.  ( W  u.  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  C_  ( W  u.  (
1 ... N ) ) )
12 eldioph2b 35676 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( W  u.  (
1 ... N ) )  e.  _V )  /\  ( -.  ( W  u.  ( 1 ... N
) )  e.  Fin  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) ) )  ->  ( S  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
135, 11, 12sylancl 675 . . 3  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
14 elmapssres 7514 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  (
1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) ) )
1510, 14mpan2 685 . . . . . . . . . . . . . 14  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
1615adantr 472 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
17 ssun1 3588 . . . . . . . . . . . . . . . 16  |-  W  C_  ( W  u.  (
1 ... N ) )
18 elmapssres 7514 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  W  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  W )  e.  ( NN0  ^m  W ) )
1917, 18mpan2 685 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
2019adantr 472 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
21 uncom 3569 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( ( u  |`  W )  u.  (
u  |`  ( 1 ... N ) ) )
22 resundi 5124 . . . . . . . . . . . . . . . . . . 19  |-  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  ( ( u  |`  W )  u.  ( u  |`  (
1 ... N ) ) )
2321, 22eqtr4i 2496 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( u  |`  ( W  u.  ( 1 ... N ) ) )
24 elmapi 7511 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  u :
( W  u.  (
1 ... N ) ) --> NN0 )
25 ffn 5739 . . . . . . . . . . . . . . . . . . 19  |-  ( u : ( W  u.  ( 1 ... N
) ) --> NN0  ->  u  Fn  ( W  u.  ( 1 ... N
) ) )
26 fnresdm 5695 . . . . . . . . . . . . . . . . . . 19  |-  ( u  Fn  ( W  u.  ( 1 ... N
) )  ->  (
u  |`  ( W  u.  ( 1 ... N
) ) )  =  u )
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  u )
2823, 27syl5eq 2517 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  u )
2928fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  ( p `
 u ) )
3029eqeq1d 2473 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0  <-> 
( p `  u
)  =  0 ) )
3130biimpar 493 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 )
32 uneq2 3573 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( u  |`  W )  ->  (
( u  |`  (
1 ... N ) )  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )
3332fveq2d 5883 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( u  |`  W )  ->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  ( u  |`  W ) ) ) )
3433eqeq1d 2473 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u  |`  W )  ->  (
( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0  <->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 ) )
3534rspcev 3136 . . . . . . . . . . . . . 14  |-  ( ( ( u  |`  W )  e.  ( NN0  ^m  W )  /\  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0 )  ->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 )
3620, 31, 35syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  E. w  e.  ( NN0  ^m  W ) ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0 )
3716, 36jca 541 . . . . . . . . . . . 12  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
38 eleq1 2537 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  e.  ( NN0 
^m  ( 1 ... N ) )  <->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) ) )
39 uneq1 3572 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  w
) )
4039fveq2d 5883 . . . . . . . . . . . . . . 15  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
p `  ( t  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) ) )
4140eqeq1d 2473 . . . . . . . . . . . . . 14  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( p `  (
t  u.  w ) )  =  0  <->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  0 ) )
4241rexbidv 2892 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  <->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
4338, 42anbi12d 725 . . . . . . . . . . . 12  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 )  <->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) ) )
4437, 43syl5ibrcom 230 . . . . . . . . . . 11  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( t  =  ( u  |`  (
1 ... N ) )  ->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4544expimpd 614 . . . . . . . . . 10  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
( p `  u
)  =  0  /\  t  =  ( u  |`  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4645ancomsd 461 . . . . . . . . 9  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4746rexlimiv 2867 . . . . . . . 8  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
48 uncom 3569 . . . . . . . . . . . 12  |-  ( t  u.  w )  =  ( w  u.  t
)
49 fz1ssnn 11856 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... N )  C_  NN
50 sslin 3649 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... N ) 
C_  NN  ->  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN ) )
5149, 50ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN )
52 eldioph4b.c . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  NN )  =  (/)
5351, 52sseqtri 3450 . . . . . . . . . . . . . . . . . 18  |-  ( W  i^i  ( 1 ... N ) )  C_  (/)
54 ss0 3768 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  i^i  ( 1 ... N ) ) 
C_  (/)  ->  ( W  i^i  ( 1 ... N
) )  =  (/) )
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( W  i^i  ( 1 ... N ) )  =  (/)
5655reseq2i 5108 . . . . . . . . . . . . . . . 16  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( w  |`  (/) )
57 res0 5115 . . . . . . . . . . . . . . . 16  |-  ( w  |`  (/) )  =  (/)
5856, 57eqtri 2493 . . . . . . . . . . . . . . 15  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
5955reseq2i 5108 . . . . . . . . . . . . . . . 16  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  (/) )
60 res0 5115 . . . . . . . . . . . . . . . 16  |-  ( t  |`  (/) )  =  (/)
6159, 60eqtri 2493 . . . . . . . . . . . . . . 15  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
6258, 61eqtr4i 2496 . . . . . . . . . . . . . 14  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  ( W  i^i  (
1 ... N ) ) )
63 elmapresaun 35684 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( w  u.  t )  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) )
6462, 63mp3an3 1379 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6564ancoms 460 . . . . . . . . . . . 12  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6648, 65syl5eqel 2553 . . . . . . . . . . 11  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6766adantr 472 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
t  u.  w )  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) ) )
6848reseq1i 5107 . . . . . . . . . . . 12  |-  ( ( t  u.  w )  |`  ( 1 ... N
) )  =  ( ( w  u.  t
)  |`  ( 1 ... N ) )
69 elmapresaunres2 35685 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( (
w  u.  t )  |`  ( 1 ... N
) )  =  t )
7062, 69mp3an3 1379 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7170ancoms 460 . . . . . . . . . . . 12  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7268, 71syl5req 2518 . . . . . . . . . . 11  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
7372adantr 472 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
74 simpr 468 . . . . . . . . . 10  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
p `  ( t  u.  w ) )  =  0 )
75 reseq1 5105 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
u  |`  ( 1 ... N ) )  =  ( ( t  u.  w )  |`  (
1 ... N ) ) )
7675eqeq2d 2481 . . . . . . . . . . . 12  |-  ( u  =  ( t  u.  w )  ->  (
t  =  ( u  |`  ( 1 ... N
) )  <->  t  =  ( ( t  u.  w )  |`  (
1 ... N ) ) ) )
77 fveq2 5879 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
p `  u )  =  ( p `  ( t  u.  w
) ) )
7877eqeq1d 2473 . . . . . . . . . . . 12  |-  ( u  =  ( t  u.  w )  ->  (
( p `  u
)  =  0  <->  (
p `  ( t  u.  w ) )  =  0 ) )
7976, 78anbi12d 725 . . . . . . . . . . 11  |-  ( u  =  ( t  u.  w )  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( ( t  u.  w )  |`  (
1 ... N ) )  /\  ( p `  ( t  u.  w
) )  =  0 ) ) )
8079rspcev 3136 . . . . . . . . . 10  |-  ( ( ( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( t  =  ( ( t  u.  w
)  |`  ( 1 ... N ) )  /\  ( p `  (
t  u.  w ) )  =  0 ) )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8167, 73, 74, 80syl12anc 1290 . . . . . . . . 9  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8281r19.29an 2917 . . . . . . . 8  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0 
^m  W ) ( p `  ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) )
8347, 82impbii 192 . . . . . . 7  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
8483abbii 2587 . . . . . 6  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
85 df-rab 2765 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
8684, 85eqtr4i 2496 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 }
8786eqeq2i 2483 . . . 4  |-  ( S  =  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  S  =  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
8887rexbii 2881 . . 3  |-  ( E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
8913, 88syl6bb 269 . 2  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 } ) )
901, 89biadan2 654 1  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457   E.wrex 2757   {crab 2760   _Vcvv 3031    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722    |` cres 4841    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   Fincfn 7587   0cc0 9557   1c1 9558   NNcn 10631   NN0cn0 10893   ...cfz 11810  mzPolycmzp 35635  Diophcdioph 35668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-hash 12554  df-mzpcl 35636  df-mzp 35637  df-dioph 35669
This theorem is referenced by:  eldioph4i  35726  diophren  35727
  Copyright terms: Public domain W3C validator