Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Unicode version

Theorem eldioph4b 26762
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a  |-  W  e. 
_V
eldioph4b.b  |-  -.  W  e.  Fin
eldioph4b.c  |-  ( W  i^i  NN )  =  (/)
Assertion
Ref Expression
eldioph4b  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Distinct variable groups:    W, p, t, w    S, p, t, w    N, p, t, w

Proof of Theorem eldioph4b
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 26712 . 2  |-  ( S  e.  (Dioph `  N
)  ->  N  e.  NN0 )
2 eldioph4b.a . . . . . 6  |-  W  e. 
_V
3 ovex 6065 . . . . . 6  |-  ( 1 ... N )  e. 
_V
42, 3unex 4666 . . . . 5  |-  ( W  u.  ( 1 ... N ) )  e. 
_V
54jctr 527 . . . 4  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  ( W  u.  ( 1 ... N ) )  e.  _V ) )
6 eldioph4b.b . . . . . . 7  |-  -.  W  e.  Fin
76intnanr 882 . . . . . 6  |-  -.  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin )
8 unfir 7334 . . . . . 6  |-  ( ( W  u.  ( 1 ... N ) )  e.  Fin  ->  ( W  e.  Fin  /\  (
1 ... N )  e. 
Fin ) )
97, 8mto 169 . . . . 5  |-  -.  ( W  u.  ( 1 ... N ) )  e.  Fin
10 ssun2 3471 . . . . 5  |-  ( 1 ... N )  C_  ( W  u.  (
1 ... N ) )
119, 10pm3.2i 442 . . . 4  |-  ( -.  ( W  u.  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  C_  ( W  u.  (
1 ... N ) ) )
12 eldioph2b 26711 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( W  u.  (
1 ... N ) )  e.  _V )  /\  ( -.  ( W  u.  ( 1 ... N
) )  e.  Fin  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) ) )  ->  ( S  e.  (Dioph `  N )  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
135, 11, 12sylancl 644 . . 3  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) } ) )
14 elmapssres 26661 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( 1 ... N
)  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  (
1 ... N ) )  e.  ( NN0  ^m  ( 1 ... N
) ) )
1510, 14mpan2 653 . . . . . . . . . . . . . 14  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
1615adantr 452 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
17 ssun1 3470 . . . . . . . . . . . . . . . 16  |-  W  C_  ( W  u.  (
1 ... N ) )
18 elmapssres 26661 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  W  C_  ( W  u.  ( 1 ... N
) ) )  -> 
( u  |`  W )  e.  ( NN0  ^m  W ) )
1917, 18mpan2 653 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
2019adantr 452 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( u  |`  W )  e.  ( NN0  ^m  W ) )
21 uncom 3451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( ( u  |`  W )  u.  (
u  |`  ( 1 ... N ) ) )
22 resundi 5119 . . . . . . . . . . . . . . . . . . 19  |-  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  ( ( u  |`  W )  u.  ( u  |`  (
1 ... N ) ) )
2321, 22eqtr4i 2427 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  ( u  |`  ( W  u.  ( 1 ... N ) ) )
24 elmapi 6997 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  u :
( W  u.  (
1 ... N ) ) --> NN0 )
25 ffn 5550 . . . . . . . . . . . . . . . . . . 19  |-  ( u : ( W  u.  ( 1 ... N
) ) --> NN0  ->  u  Fn  ( W  u.  ( 1 ... N
) ) )
26 fnresdm 5513 . . . . . . . . . . . . . . . . . . 19  |-  ( u  Fn  ( W  u.  ( 1 ... N
) )  ->  (
u  |`  ( W  u.  ( 1 ... N
) ) )  =  u )
2724, 25, 263syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( u  |`  ( W  u.  (
1 ... N ) ) )  =  u )
2823, 27syl5eq 2448 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) )  =  u )
2928fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  ( p `
 u ) )
3029eqeq1d 2412 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0  <-> 
( p `  u
)  =  0 ) )
3130biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 )
32 uneq2 3455 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( u  |`  W )  ->  (
( u  |`  (
1 ... N ) )  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )
3332fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( u  |`  W )  ->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  ( u  |`  W ) ) ) )
3433eqeq1d 2412 . . . . . . . . . . . . . . 15  |-  ( w  =  ( u  |`  W )  ->  (
( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0  <->  ( p `  ( ( u  |`  ( 1 ... N
) )  u.  (
u  |`  W ) ) )  =  0 ) )
3534rspcev 3012 . . . . . . . . . . . . . 14  |-  ( ( ( u  |`  W )  e.  ( NN0  ^m  W )  /\  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  ( u  |`  W ) ) )  =  0 )  ->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 )
3620, 31, 35syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  E. w  e.  ( NN0  ^m  W ) ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) )  =  0 )
3716, 36jca 519 . . . . . . . . . . . 12  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
38 eleq1 2464 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  e.  ( NN0 
^m  ( 1 ... N ) )  <->  ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) ) )
39 uneq1 3454 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
t  u.  w )  =  ( ( u  |`  ( 1 ... N
) )  u.  w
) )
4039fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
p `  ( t  u.  w ) )  =  ( p `  (
( u  |`  (
1 ... N ) )  u.  w ) ) )
4140eqeq1d 2412 . . . . . . . . . . . . . 14  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( p `  (
t  u.  w ) )  =  0  <->  (
p `  ( (
u  |`  ( 1 ... N ) )  u.  w ) )  =  0 ) )
4241rexbidv 2687 . . . . . . . . . . . . 13  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  <->  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) )
4338, 42anbi12d 692 . . . . . . . . . . . 12  |-  ( t  =  ( u  |`  ( 1 ... N
) )  ->  (
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 )  <->  ( ( u  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( ( u  |`  ( 1 ... N
) )  u.  w
) )  =  0 ) ) )
4437, 43syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( p `  u
)  =  0 )  ->  ( t  =  ( u  |`  (
1 ... N ) )  ->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4544expimpd 587 . . . . . . . . . 10  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
( p `  u
)  =  0  /\  t  =  ( u  |`  ( 1 ... N
) ) )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4645ancomsd 441 . . . . . . . . 9  |-  ( u  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) )  ->  ( (
t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) ) )
4746rexlimiv 2784 . . . . . . . 8  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  -> 
( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
48 uncom 3451 . . . . . . . . . . . . . 14  |-  ( t  u.  w )  =  ( w  u.  t
)
49 fz1ssnn 26761 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1 ... N )  C_  NN
50 sslin 3527 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1 ... N ) 
C_  NN  ->  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN ) )
5149, 50ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( W  i^i  ( 1 ... N ) )  C_  ( W  i^i  NN )
52 eldioph4b.c . . . . . . . . . . . . . . . . . . . . 21  |-  ( W  i^i  NN )  =  (/)
5351, 52sseqtri 3340 . . . . . . . . . . . . . . . . . . . 20  |-  ( W  i^i  ( 1 ... N ) )  C_  (/)
54 ss0 3618 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  i^i  ( 1 ... N ) ) 
C_  (/)  ->  ( W  i^i  ( 1 ... N
) )  =  (/) )
5553, 54ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( W  i^i  ( 1 ... N ) )  =  (/)
5655reseq2i 5102 . . . . . . . . . . . . . . . . . 18  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( w  |`  (/) )
57 res0 5109 . . . . . . . . . . . . . . . . . 18  |-  ( w  |`  (/) )  =  (/)
5856, 57eqtri 2424 . . . . . . . . . . . . . . . . 17  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
5955reseq2i 5102 . . . . . . . . . . . . . . . . . 18  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  (/) )
60 res0 5109 . . . . . . . . . . . . . . . . . 18  |-  ( t  |`  (/) )  =  (/)
6159, 60eqtri 2424 . . . . . . . . . . . . . . . . 17  |-  ( t  |`  ( W  i^i  (
1 ... N ) ) )  =  (/)
6258, 61eqtr4i 2427 . . . . . . . . . . . . . . . 16  |-  ( w  |`  ( W  i^i  (
1 ... N ) ) )  =  ( t  |`  ( W  i^i  (
1 ... N ) ) )
63 elmapresaun 26719 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( w  u.  t )  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) )
6462, 63mp3an3 1268 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6564ancoms 440 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( w  u.  t
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6648, 65syl5eqel 2488 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) )
6766adantr 452 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
t  u.  w )  e.  ( NN0  ^m  ( W  u.  (
1 ... N ) ) ) )
6848reseq1i 5101 . . . . . . . . . . . . . 14  |-  ( ( t  u.  w )  |`  ( 1 ... N
) )  =  ( ( w  u.  t
)  |`  ( 1 ... N ) )
69 elmapresaunres2 26720 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  (
w  |`  ( W  i^i  ( 1 ... N
) ) )  =  ( t  |`  ( W  i^i  ( 1 ... N ) ) ) )  ->  ( (
w  u.  t )  |`  ( 1 ... N
) )  =  t )
7062, 69mp3an3 1268 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  ( NN0 
^m  W )  /\  t  e.  ( NN0  ^m  ( 1 ... N
) ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7170ancoms 440 . . . . . . . . . . . . . 14  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( w  u.  t )  |`  (
1 ... N ) )  =  t )
7268, 71syl5req 2449 . . . . . . . . . . . . 13  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
7372adantr 452 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  t  =  ( ( t  u.  w )  |`  ( 1 ... N
) ) )
74 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  (
p `  ( t  u.  w ) )  =  0 )
75 reseq1 5099 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  u.  w )  ->  (
u  |`  ( 1 ... N ) )  =  ( ( t  u.  w )  |`  (
1 ... N ) ) )
7675eqeq2d 2415 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  u.  w )  ->  (
t  =  ( u  |`  ( 1 ... N
) )  <->  t  =  ( ( t  u.  w )  |`  (
1 ... N ) ) ) )
77 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( u  =  ( t  u.  w )  ->  (
p `  u )  =  ( p `  ( t  u.  w
) ) )
7877eqeq1d 2412 . . . . . . . . . . . . . 14  |-  ( u  =  ( t  u.  w )  ->  (
( p `  u
)  =  0  <->  (
p `  ( t  u.  w ) )  =  0 ) )
7976, 78anbi12d 692 . . . . . . . . . . . . 13  |-  ( u  =  ( t  u.  w )  ->  (
( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 )  <->  ( t  =  ( ( t  u.  w )  |`  (
1 ... N ) )  /\  ( p `  ( t  u.  w
) )  =  0 ) ) )
8079rspcev 3012 . . . . . . . . . . . 12  |-  ( ( ( t  u.  w
)  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) )  /\  ( t  =  ( ( t  u.  w
)  |`  ( 1 ... N ) )  /\  ( p `  (
t  u.  w ) )  =  0 ) )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8167, 73, 74, 80syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( t  e.  ( NN0  ^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  /\  ( p `
 ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) )
8281ex 424 . . . . . . . . . 10  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  w  e.  ( NN0  ^m  W ) )  -> 
( ( p `  ( t  u.  w
) )  =  0  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
8382rexlimdva 2790 . . . . . . . . 9  |-  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  ->  ( E. w  e.  ( NN0  ^m  W ) ( p `  ( t  u.  w ) )  =  0  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) ) )
8483imp 419 . . . . . . . 8  |-  ( ( t  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. w  e.  ( NN0 
^m  W ) ( p `  ( t  u.  w ) )  =  0 )  ->  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 ) )
8547, 84impbii 181 . . . . . . 7  |-  ( E. u  e.  ( NN0 
^m  ( W  u.  ( 1 ... N
) ) ) ( t  =  ( u  |`  ( 1 ... N
) )  /\  (
p `  u )  =  0 )  <->  ( t  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 ) )
8685abbii 2516 . . . . . 6  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
87 df-rab 2675 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 }  =  {
t  |  ( t  e.  ( NN0  ^m  ( 1 ... N
) )  /\  E. w  e.  ( NN0  ^m  W ) ( p `
 ( t  u.  w ) )  =  0 ) }
8886, 87eqtr4i 2427 . . . . 5  |-  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 }
8988eqeq2i 2414 . . . 4  |-  ( S  =  { t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  ( 1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  S  =  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
9089rexbii 2691 . . 3  |-  ( E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  |  E. u  e.  ( NN0  ^m  ( W  u.  ( 1 ... N ) ) ) ( t  =  ( u  |`  (
1 ... N ) )  /\  ( p `  u )  =  0 ) }  <->  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } )
9113, 90syl6bb 253 . 2  |-  ( N  e.  NN0  ->  ( S  e.  (Dioph `  N
)  <->  E. p  e.  (mzPoly `  ( W  u.  (
1 ... N ) ) ) S  =  {
t  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. w  e.  ( NN0  ^m  W ) ( p `  (
t  u.  w ) )  =  0 } ) )
921, 91biadan2 624 1  |-  ( S  e.  (Dioph `  N
)  <->  ( N  e. 
NN0  /\  E. p  e.  (mzPoly `  ( W  u.  ( 1 ... N
) ) ) S  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. w  e.  ( NN0  ^m  W
) ( p `  ( t  u.  w
) )  =  0 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   {crab 2670   _Vcvv 2916    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588    |` cres 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   Fincfn 7068   0cc0 8946   1c1 8947   NNcn 9956   NN0cn0 10177   ...cfz 10999  mzPolycmzp 26669  Diophcdioph 26703
This theorem is referenced by:  eldioph4i  26763  diophren  26764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574  df-mzpcl 26670  df-mzp 26671  df-dioph 26704
  Copyright terms: Public domain W3C validator