Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem2 Structured version   Visualization version   Unicode version

Theorem eldioph2lem2 35674
Description: Lemma for eldioph2 35675. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Distinct variable groups:    N, c    S, c    A, c

Proof of Theorem eldioph2lem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplr 770 . . . 4  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  S  e.  Fin )
2 fzfi 12223 . . . 4  |-  ( 1 ... N )  e. 
Fin
3 difinf 7859 . . . 4  |-  ( ( -.  S  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  -.  ( S  \ 
( 1 ... N
) )  e.  Fin )
41, 2, 3sylancl 675 . . 3  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  ( S  \  ( 1 ... N ) )  e. 
Fin )
5 fzfi 12223 . . . 4  |-  ( 1 ... A )  e. 
Fin
6 diffi 7821 . . . 4  |-  ( ( 1 ... A )  e.  Fin  ->  (
( 1 ... A
)  \  ( 1 ... N ) )  e.  Fin )
75, 6ax-mp 5 . . 3  |-  ( ( 1 ... A ) 
\  ( 1 ... N ) )  e. 
Fin
8 isinffi 8444 . . 3  |-  ( ( -.  ( S  \ 
( 1 ... N
) )  e.  Fin  /\  ( ( 1 ... A )  \  (
1 ... N ) )  e.  Fin )  ->  E. a  a :
( ( 1 ... A )  \  (
1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )
94, 7, 8sylancl 675 . 2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. a 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-> ( S  \  ( 1 ... N ) ) )
10 f1f1orn 5839 . . . . . . . 8  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-onto-> ran  a
)
1110adantl 473 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  a :
( ( 1 ... A )  \  (
1 ... N ) ) -1-1-onto-> ran  a )
12 f1oi 5864 . . . . . . . 8  |-  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )
1312a1i 11 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
14 incom 3616 . . . . . . . . 9  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  (
( 1 ... A
)  \  ( 1 ... N ) ) )
15 disjdif 3830 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  ( ( 1 ... A )  \ 
( 1 ... N
) ) )  =  (/)
1614, 15eqtri 2493 . . . . . . . 8  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
1716a1i 11 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/) )
18 f1f 5792 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) --> ( S  \  ( 1 ... N ) ) )
19 frn 5747 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) --> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2018, 19syl 17 . . . . . . . . . . 11  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2120adantl 473 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  ( S  \  (
1 ... N ) ) )
22 ssrin 3648 . . . . . . . . . 10  |-  ( ran  a  C_  ( S  \  ( 1 ... N
) )  ->  ( ran  a  i^i  (
1 ... N ) ) 
C_  ( ( S 
\  ( 1 ... N ) )  i^i  ( 1 ... N
) ) )
2321, 22syl 17 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  ( ( S  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
24 incom 3616 . . . . . . . . . 10  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( S  \  ( 1 ... N ) ) )
25 disjdif 3830 . . . . . . . . . 10  |-  ( ( 1 ... N )  i^i  ( S  \ 
( 1 ... N
) ) )  =  (/)
2624, 25eqtri 2493 . . . . . . . . 9  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
2723, 26syl6sseq 3464 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  (/) )
28 ss0 3768 . . . . . . . 8  |-  ( ( ran  a  i^i  (
1 ... N ) ) 
C_  (/)  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
2927, 28syl 17 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
30 f1oun 5847 . . . . . . 7  |-  ( ( ( a : ( ( 1 ... A
)  \  ( 1 ... N ) ) -1-1-onto-> ran  a  /\  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )  /\  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)  /\  ( ran  a  i^i  ( 1 ... N
) )  =  (/) ) )  ->  (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) ) )
3111, 13, 17, 29, 30syl22anc 1293 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-onto-> ( ran  a  u.  ( 1 ... N ) ) )
32 f1of1 5827 . . . . . 6  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
3331, 32syl 17 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
34 uncom 3569 . . . . . . 7  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( ( 1 ... N )  u.  (
( 1 ... A
)  \  ( 1 ... N ) ) )
35 simplrr 779 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  A  e.  ( ZZ>= `  N )
)
36 fzss2 11864 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... A
) )
3735, 36syl 17 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  ( 1 ... A
) )
38 undif 3839 . . . . . . . 8  |-  ( ( 1 ... N ) 
C_  ( 1 ... A )  <->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
3937, 38sylib 201 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
4034, 39syl5eq 2517 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
) )
41 f1eq2 5788 . . . . . 6  |-  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
)  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4240, 41syl 17 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4333, 42mpbid 215 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
4420difss2d 3552 . . . . . 6  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  S )
4544adantl 473 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  S )
46 simplrl 778 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  S )
4745, 46unssd 3601 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  u.  ( 1 ... N ) ) 
C_  S )
48 f1ss 5797 . . . 4  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  ( 1 ... N ) )  /\  ( ran  a  u.  ( 1 ... N
) )  C_  S
)  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
4943, 47, 48syl2anc 673 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
50 resundir 5125 . . . 4  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  ( ( a  |`  (
1 ... N ) )  u.  ( (  _I  |`  ( 1 ... N
) )  |`  (
1 ... N ) ) )
51 dmres 5131 . . . . . . . 8  |-  dom  (
a  |`  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  dom  a )
52 incom 3616 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  dom  a )  =  ( dom  a  i^i  ( 1 ... N
) )
53 f1dm 5796 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  dom  a  =  (
( 1 ... A
)  \  ( 1 ... N ) ) )
5453adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  a  =  ( ( 1 ... A )  \  (
1 ... N ) ) )
5554ineq1d 3624 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  ( ( ( 1 ... A )  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
5655, 16syl6eq 2521 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  (/) )
5752, 56syl5eq 2517 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i 
dom  a )  =  (/) )
5851, 57syl5eq 2517 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
59 relres 5138 . . . . . . . 8  |-  Rel  (
a  |`  ( 1 ... N ) )
60 reldm0 5058 . . . . . . . 8  |-  ( Rel  ( a  |`  (
1 ... N ) )  ->  ( ( a  |`  ( 1 ... N
) )  =  (/)  <->  dom  ( a  |`  (
1 ... N ) )  =  (/) ) )
6159, 60ax-mp 5 . . . . . . 7  |-  ( ( a  |`  ( 1 ... N ) )  =  (/)  <->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
6258, 61sylibr 217 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  |`  ( 1 ... N
) )  =  (/) )
63 residm 5142 . . . . . . 7  |-  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) )
6463a1i 11 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
6562, 64uneq12d 3580 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  ( (/)  u.  (  _I  |`  ( 1 ... N ) ) ) )
66 uncom 3569 . . . . . 6  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )
67 un0 3762 . . . . . 6  |-  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )  =  (  _I  |`  ( 1 ... N ) )
6866, 67eqtri 2493 . . . . 5  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  (  _I  |`  ( 1 ... N
) )
6965, 68syl6eq 2521 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  (  _I  |`  (
1 ... N ) ) )
7050, 69syl5eq 2517 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
71 vex 3034 . . . . 5  |-  a  e. 
_V
72 ovex 6336 . . . . . 6  |-  ( 1 ... N )  e. 
_V
73 resiexg 6748 . . . . . 6  |-  ( ( 1 ... N )  e.  _V  ->  (  _I  |`  ( 1 ... N ) )  e. 
_V )
7472, 73ax-mp 5 . . . . 5  |-  (  _I  |`  ( 1 ... N
) )  e.  _V
7571, 74unex 6608 . . . 4  |-  ( a  u.  (  _I  |`  (
1 ... N ) ) )  e.  _V
76 f1eq1 5787 . . . . 5  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c : ( 1 ... A ) -1-1-> S  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
) )
77 reseq1 5105 . . . . . 6  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c  |`  ( 1 ... N
) )  =  ( ( a  u.  (  _I  |`  ( 1 ... N ) ) )  |`  ( 1 ... N
) ) )
7877eqeq1d 2473 . . . . 5  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) )  <-> 
( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
7976, 78anbi12d 725 . . . 4  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c : ( 1 ... A ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  ( ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) ) )
8075, 79spcev 3127 . . 3  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
8149, 70, 80syl2anc 673 . 2  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
829, 81exlimddv 1789 1  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722    _I cid 4749   dom cdm 4839   ran crn 4840    |` cres 4841   Rel wrel 4844   -->wf 5585   -1-1->wf1 5586   -1-1-onto->wf1o 5588   ` cfv 5589  (class class class)co 6308   Fincfn 7587   1c1 9558   NN0cn0 10893   ZZ>=cuz 11182   ...cfz 11810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811
This theorem is referenced by:  eldioph2b  35676
  Copyright terms: Public domain W3C validator