Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem2 Structured version   Unicode version

Theorem eldioph2lem2 29240
Description: Lemma for eldioph2 29241. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Distinct variable groups:    N, c    S, c    A, c

Proof of Theorem eldioph2lem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . 4  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  S  e.  Fin )
2 fzfi 11904 . . . 4  |-  ( 1 ... N )  e. 
Fin
3 difinf 7686 . . . 4  |-  ( ( -.  S  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  -.  ( S  \ 
( 1 ... N
) )  e.  Fin )
41, 2, 3sylancl 662 . . 3  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  -.  ( S  \  ( 1 ... N ) )  e. 
Fin )
5 fzfi 11904 . . . 4  |-  ( 1 ... A )  e. 
Fin
6 diffi 7647 . . . 4  |-  ( ( 1 ... A )  e.  Fin  ->  (
( 1 ... A
)  \  ( 1 ... N ) )  e.  Fin )
75, 6ax-mp 5 . . 3  |-  ( ( 1 ... A ) 
\  ( 1 ... N ) )  e. 
Fin
8 isinffi 8266 . . 3  |-  ( ( -.  ( S  \ 
( 1 ... N
) )  e.  Fin  /\  ( ( 1 ... A )  \  (
1 ... N ) )  e.  Fin )  ->  E. a  a :
( ( 1 ... A )  \  (
1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )
94, 7, 8sylancl 662 . 2  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. a 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-> ( S  \  ( 1 ... N ) ) )
10 f1f1orn 5753 . . . . . . . 8  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) -1-1-onto-> ran  a
)
1110adantl 466 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  a :
( ( 1 ... A )  \  (
1 ... N ) ) -1-1-onto-> ran  a )
12 f1oi 5777 . . . . . . . 8  |-  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )
1312a1i 11 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
14 incom 3644 . . . . . . . . 9  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  (
( 1 ... A
)  \  ( 1 ... N ) ) )
15 disjdif 3852 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  ( ( 1 ... A )  \ 
( 1 ... N
) ) )  =  (/)
1614, 15eqtri 2480 . . . . . . . 8  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
1716a1i 11 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/) )
18 f1f 5707 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  -> 
a : ( ( 1 ... A ) 
\  ( 1 ... N ) ) --> ( S  \  ( 1 ... N ) ) )
19 frn 5666 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) --> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2018, 19syl 16 . . . . . . . . . . 11  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  ( S 
\  ( 1 ... N ) ) )
2120adantl 466 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  ( S  \  (
1 ... N ) ) )
22 ssrin 3676 . . . . . . . . . 10  |-  ( ran  a  C_  ( S  \  ( 1 ... N
) )  ->  ( ran  a  i^i  (
1 ... N ) ) 
C_  ( ( S 
\  ( 1 ... N ) )  i^i  ( 1 ... N
) ) )
2321, 22syl 16 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  ( ( S  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
24 incom 3644 . . . . . . . . . 10  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( S  \  ( 1 ... N ) ) )
25 disjdif 3852 . . . . . . . . . 10  |-  ( ( 1 ... N )  i^i  ( S  \ 
( 1 ... N
) ) )  =  (/)
2624, 25eqtri 2480 . . . . . . . . 9  |-  ( ( S  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
2723, 26syl6sseq 3503 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  C_  (/) )
28 ss0 3769 . . . . . . . 8  |-  ( ( ran  a  i^i  (
1 ... N ) ) 
C_  (/)  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
2927, 28syl 16 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  i^i  ( 1 ... N ) )  =  (/) )
30 f1oun 5761 . . . . . . 7  |-  ( ( ( a : ( ( 1 ... A
)  \  ( 1 ... N ) ) -1-1-onto-> ran  a  /\  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )  /\  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)  /\  ( ran  a  i^i  ( 1 ... N
) )  =  (/) ) )  ->  (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) ) )
3111, 13, 17, 29, 30syl22anc 1220 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-onto-> ( ran  a  u.  ( 1 ... N ) ) )
32 f1of1 5741 . . . . . 6  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ran  a  u.  (
1 ... N ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
3331, 32syl 16 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
34 uncom 3601 . . . . . . 7  |-  ( ( ( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( ( 1 ... N )  u.  (
( 1 ... A
)  \  ( 1 ... N ) ) )
35 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  A  e.  ( ZZ>= `  N )
)
36 fzss2 11608 . . . . . . . . 9  |-  ( A  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... A
) )
3735, 36syl 16 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  ( 1 ... A
) )
38 undif 3860 . . . . . . . 8  |-  ( ( 1 ... N ) 
C_  ( 1 ... A )  <->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
3937, 38sylib 196 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  u.  ( ( 1 ... A )  \  (
1 ... N ) ) )  =  ( 1 ... A ) )
4034, 39syl5eq 2504 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
( 1 ... A
)  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
) )
41 f1eq2 5703 . . . . . 6  |-  ( ( ( ( 1 ... A )  \  (
1 ... N ) )  u.  ( 1 ... N ) )  =  ( 1 ... A
)  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4240, 41syl 16 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( 1 ... A )  \ 
( 1 ... N
) )  u.  (
1 ... N ) )
-1-1-> ( ran  a  u.  ( 1 ... N
) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) ) )
4333, 42mpbid 210 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  (
1 ... N ) ) )
4420difss2d 3587 . . . . . 6  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  ran  a  C_  S )
4544adantl 466 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ran  a  C_  S )
46 simplrl 759 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  S )
4745, 46unssd 3633 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( ran  a  u.  ( 1 ... N ) ) 
C_  S )
48 f1ss 5712 . . . 4  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> ( ran  a  u.  ( 1 ... N ) )  /\  ( ran  a  u.  ( 1 ... N
) )  C_  S
)  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
4943, 47, 48syl2anc 661 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
)
50 resundir 5226 . . . 4  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  ( ( a  |`  (
1 ... N ) )  u.  ( (  _I  |`  ( 1 ... N
) )  |`  (
1 ... N ) ) )
51 dmres 5232 . . . . . . . 8  |-  dom  (
a  |`  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  dom  a )
52 incom 3644 . . . . . . . . 9  |-  ( ( 1 ... N )  i^i  dom  a )  =  ( dom  a  i^i  ( 1 ... N
) )
53 f1dm 5711 . . . . . . . . . . . 12  |-  ( a : ( ( 1 ... A )  \ 
( 1 ... N
) ) -1-1-> ( S 
\  ( 1 ... N ) )  ->  dom  a  =  (
( 1 ... A
)  \  ( 1 ... N ) ) )
5453adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  a  =  ( ( 1 ... A )  \  (
1 ... N ) ) )
5554ineq1d 3652 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  ( ( ( 1 ... A )  \ 
( 1 ... N
) )  i^i  (
1 ... N ) ) )
5655, 16syl6eq 2508 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( dom  a  i^i  ( 1 ... N ) )  =  (/) )
5752, 56syl5eq 2504 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i 
dom  a )  =  (/) )
5851, 57syl5eq 2504 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
59 relres 5239 . . . . . . . 8  |-  Rel  (
a  |`  ( 1 ... N ) )
60 reldm0 5158 . . . . . . . 8  |-  ( Rel  ( a  |`  (
1 ... N ) )  ->  ( ( a  |`  ( 1 ... N
) )  =  (/)  <->  dom  ( a  |`  (
1 ... N ) )  =  (/) ) )
6159, 60ax-mp 5 . . . . . . 7  |-  ( ( a  |`  ( 1 ... N ) )  =  (/)  <->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
6258, 61sylibr 212 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( a  |`  ( 1 ... N
) )  =  (/) )
63 residm 5242 . . . . . . 7  |-  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) )
6463a1i 11 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
6562, 64uneq12d 3612 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  ( (/)  u.  (  _I  |`  ( 1 ... N ) ) ) )
66 uncom 3601 . . . . . 6  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )
67 un0 3763 . . . . . 6  |-  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )  =  (  _I  |`  ( 1 ... N ) )
6866, 67eqtri 2480 . . . . 5  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  (  _I  |`  ( 1 ... N
) )
6965, 68syl6eq 2508 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  (  _I  |`  (
1 ... N ) ) )
7050, 69syl5eq 2504 . . 3  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
71 vex 3074 . . . . 5  |-  a  e. 
_V
72 ovex 6218 . . . . . 6  |-  ( 1 ... N )  e. 
_V
73 resiexg 6617 . . . . . 6  |-  ( ( 1 ... N )  e.  _V  ->  (  _I  |`  ( 1 ... N ) )  e. 
_V )
7472, 73ax-mp 5 . . . . 5  |-  (  _I  |`  ( 1 ... N
) )  e.  _V
7571, 74unex 6481 . . . 4  |-  ( a  u.  (  _I  |`  (
1 ... N ) ) )  e.  _V
76 f1eq1 5702 . . . . 5  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c : ( 1 ... A ) -1-1-> S  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S
) )
77 reseq1 5205 . . . . . 6  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( c  |`  ( 1 ... N
) )  =  ( ( a  u.  (  _I  |`  ( 1 ... N ) ) )  |`  ( 1 ... N
) ) )
7877eqeq1d 2453 . . . . 5  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) )  <-> 
( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
7976, 78anbi12d 710 . . . 4  |-  ( c  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
c : ( 1 ... A ) -1-1-> S  /\  ( c  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  ( ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) ) )
8075, 79spcev 3163 . . 3  |-  ( ( ( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( 1 ... A ) -1-1-> S  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
8149, 70, 80syl2anc 661 . 2  |-  ( ( ( ( N  e. 
NN0  /\  -.  S  e.  Fin )  /\  (
( 1 ... N
)  C_  S  /\  A  e.  ( ZZ>= `  N ) ) )  /\  a : ( ( 1 ... A
)  \  ( 1 ... N ) )
-1-1-> ( S  \  (
1 ... N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
829, 81exlimddv 1693 1  |-  ( ( ( N  e.  NN0  /\ 
-.  S  e.  Fin )  /\  ( ( 1 ... N )  C_  S  /\  A  e.  (
ZZ>= `  N ) ) )  ->  E. c
( c : ( 1 ... A )
-1-1-> S  /\  ( c  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   _Vcvv 3071    \ cdif 3426    u. cun 3427    i^i cin 3428    C_ wss 3429   (/)c0 3738    _I cid 4732   dom cdm 4941   ran crn 4942    |` cres 4943   Rel wrel 4946   -->wf 5515   -1-1->wf1 5516   -1-1-onto->wf1o 5518   ` cfv 5519  (class class class)co 6193   Fincfn 7413   1c1 9387   NN0cn0 10683   ZZ>=cuz 10965   ...cfz 11547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-card 8213  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548
This theorem is referenced by:  eldioph2b  29242
  Copyright terms: Public domain W3C validator