Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem1 Unicode version

Theorem eldioph2lem1 26708
Description: Lemma for eldioph2 26710. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem1  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  E. d  e.  ( ZZ>= `  N ) E. e  e.  _V  ( e : ( 1 ... d ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Distinct variable groups:    A, d,
e    N, d, e

Proof of Theorem eldioph2lem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 nn0re 10186 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
213ad2ant1 978 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  N  e.  RR )
32recnd 9070 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  N  e.  CC )
4 ax-1cn 9004 . . . . . . . 8  |-  1  e.  CC
5 addcom 9208 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  +  1 )  =  ( 1  +  N ) )
63, 4, 5sylancl 644 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( N  +  1 )  =  ( 1  +  N ) )
7 diffi 7298 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  ( A  \  ( 1 ... N ) )  e. 
Fin )
873ad2ant2 979 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( A  \  ( 1 ... N ) )  e. 
Fin )
9 fzfid 11267 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
1 ... N )  e. 
Fin )
10 incom 3493 . . . . . . . . . . 11  |-  ( ( A  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  ( A  \  ( 1 ... N ) ) )
11 disjdif 3660 . . . . . . . . . . 11  |-  ( ( 1 ... N )  i^i  ( A  \ 
( 1 ... N
) ) )  =  (/)
1210, 11eqtri 2424 . . . . . . . . . 10  |-  ( ( A  \  ( 1 ... N ) )  i^i  ( 1 ... N ) )  =  (/)
1312a1i 11 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( A  \  (
1 ... N ) )  i^i  ( 1 ... N ) )  =  (/) )
14 hashun 11611 . . . . . . . . 9  |-  ( ( ( A  \  (
1 ... N ) )  e.  Fin  /\  (
1 ... N )  e. 
Fin  /\  ( ( A  \  ( 1 ... N ) )  i^i  ( 1 ... N
) )  =  (/) )  ->  ( # `  (
( A  \  (
1 ... N ) )  u.  ( 1 ... N ) ) )  =  ( ( # `  ( A  \  (
1 ... N ) ) )  +  ( # `  ( 1 ... N
) ) ) )
158, 9, 13, 14syl3anc 1184 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( ( A 
\  ( 1 ... N ) )  u.  ( 1 ... N
) ) )  =  ( ( # `  ( A  \  ( 1 ... N ) ) )  +  ( # `  (
1 ... N ) ) ) )
16 uncom 3451 . . . . . . . . . 10  |-  ( ( A  \  ( 1 ... N ) )  u.  ( 1 ... N ) )  =  ( ( 1 ... N )  u.  ( A  \  ( 1 ... N ) ) )
17 simp3 959 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
1 ... N )  C_  A )
18 undif 3668 . . . . . . . . . . 11  |-  ( ( 1 ... N ) 
C_  A  <->  ( (
1 ... N )  u.  ( A  \  (
1 ... N ) ) )  =  A )
1917, 18sylib 189 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( 1 ... N
)  u.  ( A 
\  ( 1 ... N ) ) )  =  A )
2016, 19syl5eq 2448 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( A  \  (
1 ... N ) )  u.  ( 1 ... N ) )  =  A )
2120fveq2d 5691 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( ( A 
\  ( 1 ... N ) )  u.  ( 1 ... N
) ) )  =  ( # `  A
) )
22 hashfz1 11585 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
23223ad2ant1 978 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( 1 ... N ) )  =  N )
2423oveq2d 6056 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( # `  ( A 
\  ( 1 ... N ) ) )  +  ( # `  (
1 ... N ) ) )  =  ( (
# `  ( A  \  ( 1 ... N
) ) )  +  N ) )
2515, 21, 243eqtr3d 2444 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 A )  =  ( ( # `  ( A  \  ( 1 ... N ) ) )  +  N ) )
266, 25oveq12d 6058 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( N  +  1 ) ... ( # `  A ) )  =  ( ( 1  +  N ) ... (
( # `  ( A 
\  ( 1 ... N ) ) )  +  N ) ) )
2726fveq2d 5691 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( ( N  +  1 ) ... ( # `  A
) ) )  =  ( # `  (
( 1  +  N
) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) ) ) )
28 1z 10267 . . . . . . . . 9  |-  1  e.  ZZ
2928a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  1  e.  ZZ )
30 hashcl 11594 . . . . . . . . . 10  |-  ( ( A  \  ( 1 ... N ) )  e.  Fin  ->  ( # `
 ( A  \ 
( 1 ... N
) ) )  e. 
NN0 )
318, 30syl 16 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( A  \ 
( 1 ... N
) ) )  e. 
NN0 )
3231nn0zd 10329 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( A  \ 
( 1 ... N
) ) )  e.  ZZ )
33 nn0z 10260 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  ZZ )
34333ad2ant1 978 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  N  e.  ZZ )
35 fzen 11028 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  ( # `  ( A 
\  ( 1 ... N ) ) )  e.  ZZ  /\  N  e.  ZZ )  ->  (
1 ... ( # `  ( A  \  ( 1 ... N ) ) ) )  ~~  ( ( 1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) ) )
3629, 32, 34, 35syl3anc 1184 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
1 ... ( # `  ( A  \  ( 1 ... N ) ) ) )  ~~  ( ( 1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) ) )
3736ensymd 7117 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( 1  +  N
) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) )  ~~  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )
38 fzfi 11266 . . . . . . 7  |-  ( ( 1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) )  e.  Fin
39 fzfi 11266 . . . . . . 7  |-  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) )  e.  Fin
40 hashen 11586 . . . . . . 7  |-  ( ( ( ( 1  +  N ) ... (
( # `  ( A 
\  ( 1 ... N ) ) )  +  N ) )  e.  Fin  /\  (
1 ... ( # `  ( A  \  ( 1 ... N ) ) ) )  e.  Fin )  ->  ( ( # `  (
( 1  +  N
) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) ) )  =  (
# `  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )  <->  ( (
1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) )  ~~  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) ) )
4138, 39, 40mp2an 654 . . . . . 6  |-  ( (
# `  ( (
1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) ) )  =  (
# `  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )  <->  ( (
1  +  N ) ... ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) )  ~~  ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )
4237, 41sylibr 204 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( ( 1  +  N ) ... ( ( # `  ( A  \  ( 1 ... N ) ) )  +  N ) ) )  =  ( # `  ( 1 ... ( # `
 ( A  \ 
( 1 ... N
) ) ) ) ) )
43 hashfz1 11585 . . . . . 6  |-  ( (
# `  ( A  \  ( 1 ... N
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )  =  (
# `  ( A  \  ( 1 ... N
) ) ) )
4431, 43syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( 1 ... ( # `  ( A  \  ( 1 ... N ) ) ) ) )  =  (
# `  ( A  \  ( 1 ... N
) ) ) )
4527, 42, 443eqtrd 2440 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  ( # `
 ( ( N  +  1 ) ... ( # `  A
) ) )  =  ( # `  ( A  \  ( 1 ... N ) ) ) )
46 fzfi 11266 . . . . 5  |-  ( ( N  +  1 ) ... ( # `  A
) )  e.  Fin
47 hashen 11586 . . . . 5  |-  ( ( ( ( N  + 
1 ) ... ( # `
 A ) )  e.  Fin  /\  ( A  \  ( 1 ... N ) )  e. 
Fin )  ->  (
( # `  ( ( N  +  1 ) ... ( # `  A
) ) )  =  ( # `  ( A  \  ( 1 ... N ) ) )  <-> 
( ( N  + 
1 ) ... ( # `
 A ) ) 
~~  ( A  \ 
( 1 ... N
) ) ) )
4846, 8, 47sylancr 645 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( # `  ( ( N  +  1 ) ... ( # `  A
) ) )  =  ( # `  ( A  \  ( 1 ... N ) ) )  <-> 
( ( N  + 
1 ) ... ( # `
 A ) ) 
~~  ( A  \ 
( 1 ... N
) ) ) )
4945, 48mpbid 202 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  (
( N  +  1 ) ... ( # `  A ) )  ~~  ( A  \  (
1 ... N ) ) )
50 bren 7076 . . 3  |-  ( ( ( N  +  1 ) ... ( # `  A ) )  ~~  ( A  \  (
1 ... N ) )  <->  E. a  a :
( ( N  + 
1 ) ... ( # `
 A ) ) -1-1-onto-> ( A  \  ( 1 ... N ) ) )
5149, 50sylib 189 . 2  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  E. a 
a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )
52 simpl1 960 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  N  e.  NN0 )
5352nn0zd 10329 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  N  e.  ZZ )
54 simpl2 961 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  A  e.  Fin )
55 hashcl 11594 . . . . . 6  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
5654, 55syl 16 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( # `  A
)  e.  NN0 )
5756nn0zd 10329 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( # `  A
)  e.  ZZ )
58 nn0addge2 10223 . . . . . . 7  |-  ( ( N  e.  RR  /\  ( # `  ( A 
\  ( 1 ... N ) ) )  e.  NN0 )  ->  N  <_  ( ( # `  ( A  \  (
1 ... N ) ) )  +  N ) )
592, 31, 58syl2anc 643 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  N  <_  ( ( # `  ( A  \  ( 1 ... N ) ) )  +  N ) )
6059, 25breqtrrd 4198 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  N  <_  ( # `  A
) )
6160adantr 452 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  N  <_  (
# `  A )
)
62 eluz2 10450 . . . 4  |-  ( (
# `  A )  e.  ( ZZ>= `  N )  <->  ( N  e.  ZZ  /\  ( # `  A )  e.  ZZ  /\  N  <_  ( # `  A
) ) )
6353, 57, 61, 62syl3anbrc 1138 . . 3  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( # `  A
)  e.  ( ZZ>= `  N ) )
64 vex 2919 . . . . 5  |-  a  e. 
_V
65 ovex 6065 . . . . . 6  |-  ( 1 ... N )  e. 
_V
66 resiexg 5147 . . . . . 6  |-  ( ( 1 ... N )  e.  _V  ->  (  _I  |`  ( 1 ... N ) )  e. 
_V )
6765, 66ax-mp 8 . . . . 5  |-  (  _I  |`  ( 1 ... N
) )  e.  _V
6864, 67unex 4666 . . . 4  |-  ( a  u.  (  _I  |`  (
1 ... N ) ) )  e.  _V
6968a1i 11 . . 3  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) )  e.  _V )
70 simpr 448 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  a :
( ( N  + 
1 ) ... ( # `
 A ) ) -1-1-onto-> ( A  \  ( 1 ... N ) ) )
71 f1oi 5672 . . . . . 6  |-  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N )
7271a1i 11 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  (  _I  |`  ( 1 ... N
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
73 incom 3493 . . . . . 6  |-  ( ( ( N  +  1 ) ... ( # `  A ) )  i^i  ( 1 ... N
) )  =  ( ( 1 ... N
)  i^i  ( ( N  +  1 ) ... ( # `  A
) ) )
7452nn0red 10231 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  N  e.  RR )
7574ltp1d 9897 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  N  <  ( N  +  1 ) )
76 fzdisj 11034 . . . . . . 7  |-  ( N  <  ( N  + 
1 )  ->  (
( 1 ... N
)  i^i  ( ( N  +  1 ) ... ( # `  A
) ) )  =  (/) )
7775, 76syl 16 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i  ( ( N  + 
1 ) ... ( # `
 A ) ) )  =  (/) )
7873, 77syl5eq 2448 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
( N  +  1 ) ... ( # `  A ) )  i^i  ( 1 ... N
) )  =  (/) )
7912a1i 11 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( ( A  \  ( 1 ... N ) )  i^i  ( 1 ... N
) )  =  (/) )
80 f1oun 5653 . . . . 5  |-  ( ( ( a : ( ( N  +  1 ) ... ( # `  A ) ) -1-1-onto-> ( A 
\  ( 1 ... N ) )  /\  (  _I  |`  ( 1 ... N ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  /\  (
( ( ( N  +  1 ) ... ( # `  A
) )  i^i  (
1 ... N ) )  =  (/)  /\  (
( A  \  (
1 ... N ) )  i^i  ( 1 ... N ) )  =  (/) ) )  ->  (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( N  +  1 ) ... ( # `  A
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ( A  \  (
1 ... N ) )  u.  ( 1 ... N ) ) )
8170, 72, 78, 79, 80syl22anc 1185 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( ( ( N  +  1 ) ... ( # `  A ) )  u.  ( 1 ... N
) ) -1-1-onto-> ( ( A  \ 
( 1 ... N
) )  u.  (
1 ... N ) ) )
82 fzsplit1nn0 26702 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( # `  A )  e.  NN0  /\  N  <_ 
( # `  A ) )  ->  ( 1 ... ( # `  A
) )  =  ( ( 1 ... N
)  u.  ( ( N  +  1 ) ... ( # `  A
) ) ) )
8352, 56, 61, 82syl3anc 1184 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( 1 ... ( # `  A
) )  =  ( ( 1 ... N
)  u.  ( ( N  +  1 ) ... ( # `  A
) ) ) )
84 uncom 3451 . . . . . 6  |-  ( ( ( N  +  1 ) ... ( # `  A ) )  u.  ( 1 ... N
) )  =  ( ( 1 ... N
)  u.  ( ( N  +  1 ) ... ( # `  A
) ) )
8583, 84syl6reqr 2455 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
( N  +  1 ) ... ( # `  A ) )  u.  ( 1 ... N
) )  =  ( 1 ... ( # `  A ) ) )
86 simpl3 962 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( 1 ... N )  C_  A )
8786, 18sylib 189 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  u.  ( A  \  (
1 ... N ) ) )  =  A )
8816, 87syl5eq 2448 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( ( A  \  ( 1 ... N ) )  u.  ( 1 ... N
) )  =  A )
89 f1oeq23 5627 . . . . 5  |-  ( ( ( ( ( N  +  1 ) ... ( # `  A
) )  u.  (
1 ... N ) )  =  ( 1 ... ( # `  A
) )  /\  (
( A  \  (
1 ... N ) )  u.  ( 1 ... N ) )  =  A )  ->  (
( a  u.  (  _I  |`  ( 1 ... N ) ) ) : ( ( ( N  +  1 ) ... ( # `  A
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ( A  \  (
1 ... N ) )  u.  ( 1 ... N ) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )
9085, 88, 89syl2anc 643 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( ( ( N  +  1 ) ... ( # `  A
) )  u.  (
1 ... N ) ) -1-1-onto-> ( ( A  \  (
1 ... N ) )  u.  ( 1 ... N ) )  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )
9181, 90mpbid 202 . . 3  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
92 resundir 5120 . . . 4  |-  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  ( ( a  |`  (
1 ... N ) )  u.  ( (  _I  |`  ( 1 ... N
) )  |`  (
1 ... N ) ) )
93 dmres 5126 . . . . . . . 8  |-  dom  (
a  |`  ( 1 ... N ) )  =  ( ( 1 ... N )  i^i  dom  a )
94 f1odm 5637 . . . . . . . . . . 11  |-  ( a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) )  ->  dom  a  =  ( ( N  + 
1 ) ... ( # `
 A ) ) )
9594adantl 453 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  dom  a  =  ( ( N  + 
1 ) ... ( # `
 A ) ) )
9695ineq2d 3502 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i 
dom  a )  =  ( ( 1 ... N )  i^i  (
( N  +  1 ) ... ( # `  A ) ) ) )
9796, 77eqtrd 2436 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
1 ... N )  i^i 
dom  a )  =  (/) )
9893, 97syl5eq 2448 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
99 relres 5133 . . . . . . . 8  |-  Rel  (
a  |`  ( 1 ... N ) )
100 reldm0 5046 . . . . . . . 8  |-  ( Rel  ( a  |`  (
1 ... N ) )  ->  ( ( a  |`  ( 1 ... N
) )  =  (/)  <->  dom  ( a  |`  (
1 ... N ) )  =  (/) ) )
10199, 100ax-mp 8 . . . . . . 7  |-  ( ( a  |`  ( 1 ... N ) )  =  (/)  <->  dom  ( a  |`  ( 1 ... N
) )  =  (/) )
10298, 101sylibr 204 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( a  |`  ( 1 ... N
) )  =  (/) )
103 residm 5136 . . . . . . 7  |-  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) )
104103a1i 11 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (  _I  |`  ( 1 ... N ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
105102, 104uneq12d 3462 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  ( (/)  u.  (  _I  |`  ( 1 ... N ) ) ) )
106 uncom 3451 . . . . . 6  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )
107 un0 3612 . . . . . 6  |-  ( (  _I  |`  ( 1 ... N ) )  u.  (/) )  =  (  _I  |`  ( 1 ... N ) )
108106, 107eqtri 2424 . . . . 5  |-  ( (/)  u.  (  _I  |`  (
1 ... N ) ) )  =  (  _I  |`  ( 1 ... N
) )
109105, 108syl6eq 2452 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
a  |`  ( 1 ... N ) )  u.  ( (  _I  |`  (
1 ... N ) )  |`  ( 1 ... N
) ) )  =  (  _I  |`  (
1 ... N ) ) )
11092, 109syl5eq 2448 . . 3  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )
111 oveq2 6048 . . . . . 6  |-  ( d  =  ( # `  A
)  ->  ( 1 ... d )  =  ( 1 ... ( # `
 A ) ) )
112 f1oeq2 5625 . . . . . 6  |-  ( ( 1 ... d )  =  ( 1 ... ( # `  A
) )  ->  (
e : ( 1 ... d ) -1-1-onto-> A  <->  e :
( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )
113111, 112syl 16 . . . . 5  |-  ( d  =  ( # `  A
)  ->  ( e : ( 1 ... d ) -1-1-onto-> A  <->  e : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) )
114113anbi1d 686 . . . 4  |-  ( d  =  ( # `  A
)  ->  ( (
e : ( 1 ... d ) -1-1-onto-> A  /\  ( e  |`  (
1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) )  <->  ( e : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) ) )
115 f1oeq1 5624 . . . . 5  |-  ( e  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( e : ( 1 ... ( # `  A
) ) -1-1-onto-> A  <->  ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )
116 reseq1 5099 . . . . . 6  |-  ( e  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( e  |`  ( 1 ... N
) )  =  ( ( a  u.  (  _I  |`  ( 1 ... N ) ) )  |`  ( 1 ... N
) ) )
117116eqeq1d 2412 . . . . 5  |-  ( e  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
e  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) )  <-> 
( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )
118115, 117anbi12d 692 . . . 4  |-  ( e  =  ( a  u.  (  _I  |`  (
1 ... N ) ) )  ->  ( (
e : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) )  <->  ( ( a  u.  (  _I  |`  (
1 ... N ) ) ) : ( 1 ... ( # `  A
) ) -1-1-onto-> A  /\  ( ( a  u.  (  _I  |`  ( 1 ... N
) ) )  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) ) )
119114, 118rspc2ev 3020 . . 3  |-  ( ( ( # `  A
)  e.  ( ZZ>= `  N )  /\  (
a  u.  (  _I  |`  ( 1 ... N
) ) )  e. 
_V  /\  ( (
a  u.  (  _I  |`  ( 1 ... N
) ) ) : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  /\  ( ( a  u.  (  _I  |`  (
1 ... N ) ) )  |`  ( 1 ... N ) )  =  (  _I  |`  (
1 ... N ) ) ) )  ->  E. d  e.  ( ZZ>= `  N ) E. e  e.  _V  ( e : ( 1 ... d ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
12063, 69, 91, 110, 119syl112anc 1188 . 2  |-  ( ( ( N  e.  NN0  /\  A  e.  Fin  /\  ( 1 ... N
)  C_  A )  /\  a : ( ( N  +  1 ) ... ( # `  A
) ) -1-1-onto-> ( A  \  (
1 ... N ) ) )  ->  E. d  e.  ( ZZ>= `  N ) E. e  e.  _V  ( e : ( 1 ... d ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
12151, 120exlimddv 1645 1  |-  ( ( N  e.  NN0  /\  A  e.  Fin  /\  (
1 ... N )  C_  A )  ->  E. d  e.  ( ZZ>= `  N ) E. e  e.  _V  ( e : ( 1 ... d ) -1-1-onto-> A  /\  ( e  |`  ( 1 ... N
) )  =  (  _I  |`  ( 1 ... N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2667   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   class class class wbr 4172    _I cid 4453   dom cdm 4837    |` cres 4839   Rel wrel 4842   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    ~~ cen 7065   Fincfn 7068   CCcc 8944   RRcr 8945   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   #chash 11573
This theorem is referenced by:  eldioph2  26710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574
  Copyright terms: Public domain W3C validator