Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldiftp Structured version   Visualization version   Unicode version

Theorem eldiftp 4006
 Description: Membership in a set with three elements removed. Similar to eldifsn 4088 and eldifpr 3982. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3400 . 2
2 eltpg 4005 . . . . 5
32notbid 301 . . . 4
4 ne3anior 2736 . . . 4
53, 4syl6bbr 271 . . 3
65pm5.32i 649 . 2
71, 6bitri 257 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 189   wa 376   w3o 1006   w3a 1007   wceq 1452   wcel 1904   wne 2641   cdif 3387  ctp 3963 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-v 3033  df-dif 3393  df-un 3395  df-sn 3960  df-pr 3962  df-tp 3964 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator