HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elcnop Structured version   Unicode version

Theorem elcnop 27502
Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elcnop  |-  ( T  e.  ConOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
Distinct variable group:    x, w, y, z, T

Proof of Theorem elcnop
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 5878 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  w )  =  ( T `  w ) )
2 fveq1 5878 . . . . . . . . 9  |-  ( t  =  T  ->  (
t `  x )  =  ( T `  x ) )
31, 2oveq12d 6321 . . . . . . . 8  |-  ( t  =  T  ->  (
( t `  w
)  -h  ( t `
 x ) )  =  ( ( T `
 w )  -h  ( T `  x
) ) )
43fveq2d 5883 . . . . . . 7  |-  ( t  =  T  ->  ( normh `  ( ( t `
 w )  -h  ( t `  x
) ) )  =  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) ) )
54breq1d 4431 . . . . . 6  |-  ( t  =  T  ->  (
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y  <->  ( normh `  (
( T `  w
)  -h  ( T `
 x ) ) )  <  y ) )
65imbi2d 318 . . . . 5  |-  ( t  =  T  ->  (
( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  ( ( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
76rexralbidv 2948 . . . 4  |-  ( t  =  T  ->  ( E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
872ralbidv 2870 . . 3  |-  ( t  =  T  ->  ( A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y )  <->  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
9 df-cnop 27485 . . 3  |-  ConOp  =  {
t  e.  ( ~H 
^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
t `  w )  -h  ( t `  x
) ) )  < 
y ) }
108, 9elrab2 3232 . 2  |-  ( T  e.  ConOp 
<->  ( T  e.  ( ~H  ^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e. 
~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
11 ax-hilex 26644 . . . 4  |-  ~H  e.  _V
1211, 11elmap 7506 . . 3  |-  ( T  e.  ( ~H  ^m  ~H )  <->  T : ~H --> ~H )
1312anbi1i 700 . 2  |-  ( ( T  e.  ( ~H 
^m  ~H )  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) )  <->  ( T : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x )
) )  <  y
) ) )
1410, 13bitri 253 1  |-  ( T  e.  ConOp 
<->  ( T : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( ( T `  w )  -h  ( T `  x
) ) )  < 
y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   E.wrex 2777   class class class wbr 4421   -->wf 5595   ` cfv 5599  (class class class)co 6303    ^m cmap 7478    < clt 9677   RR+crp 11304   ~Hchil 26564   normhcno 26568    -h cmv 26570   ConOpccop 26591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-hilex 26644
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-br 4422  df-opab 4481  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-map 7480  df-cnop 27485
This theorem is referenced by:  cnopc  27558  0cnop  27624  idcnop  27626  lnopconi  27679
  Copyright terms: Public domain W3C validator